人教版中学七年级下册数学期末复习试卷(附答案).doc
《人教版中学七年级下册数学期末复习试卷(附答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末复习试卷(附答案).doc(25页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末复习试卷(附答案) 一、选择题 1.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( ) A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3 2.下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列各点位于第三象限的是( ) A. B. C. D. 4.下列命题是假命题的是( ) A.两个角的和等于平角时,这两个角互为补角 B.内错角相等 C.两条平行线被第三条直线所截,内错角相等 D.对顶角相等 5.如图,直线,被直线,所截,若,,则的度数是( ) A. B. C. D. 6.如图,下列各数中,数轴上点A表示的可能是( ) A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.45° B.125° C.55° D.35° 8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为( ) A. B. C. D. 九、填空题 9.如果和互为相反数,那么________. 十、填空题 10.点关于y轴对称的点的坐标是______. 十一、填空题 11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则 ∠AOE=_____. 十二、填空题 12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°. 十三、填空题 13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度. 十四、填空题 14.任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________. 十五、填空题 15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 十六、填空题 16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______. 十七、解答题 17.计算:(1) (2) 十八、解答题 18.求下列各式中的值: (1); (2); (3). 十九、解答题 19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据) 解:∵∠1=∠2(已知) ∴CF//BD( ) ∴∠3+∠CAB=180°( ) ∵∠3=∠C(已知) ∴∠C+∠CAB=180°(等式的性质) ∴AB//CD( ) ∴∠4=∠EGA(两直线平行,同位角相等) ∵∠4=∠5(已知) ∴∠5=∠EGA(等量代换) ∴ED//FB( ) 二十、解答题 20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足. (1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标; (2)点的坐标为,的面积是的倍,求点的坐标. 二十一、解答题 21.已知:是的整数部分,是的小数部分. 求: (1),值 (2)的平方根. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.已知,AB∥DE,点C在AB上方,连接BC、CD. (1)如图1,求证:∠BCD+∠CDE=∠ABC; (2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系; (3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值. 二十四、解答题 24.阅读下面材料: 小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数. 她是这样做的: 过点作 则有 因为 所以① 所以 所以 即_ ; 1.小颖求得的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题: 已知:直线点在直线上,点在直线上,连接平分平分且所在的直线交于点. (1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示). (2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示). 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案. 【详解】 解:∵直线AD,BE被直线BF和AC所截, ∴∠1与∠2是同位角,∠5与∠4是内错角, 故选A. 【点睛】 本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义. 2.B 【分析】 根据平移的定义逐项分析判断即可. 【详解】 解:A、不能通过平移得到,故本选项错误; B、能通过平移得到,故本选项正确; C、不能通过平移得到,故本选项错误; D、不能通过平移得到,故 解析:B 【分析】 根据平移的定义逐项分析判断即可. 【详解】 解:A、不能通过平移得到,故本选项错误; B、能通过平移得到,故本选项正确; C、不能通过平移得到,故本选项错误; D、不能通过平移得到,故本选项错误. 故选:B. 【点睛】 本题考查了图形的平移,正确掌握平移的定义和性质是解题关键. 3.D 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、(0,3)在y轴上,故本选项不符合题意; B、(−2,1)在第二象限,故本选项不符合题意; C、(1,−2)在第四象限,故本选项不符合题意; D、(-1,-1)在第三象限,故本选项符合题意. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据内错角、对顶角、补角的定义一一判断即可. 【详解】 解:A、两个角的和等于平角时,这两个角互为补角,为真命题; B、两直线平行,内错角相等,故错误,为假命题; C、两条平行线被第三条直线所截,内错角相等,为真命题; D、对顶角相等,为真命题; 故选:B. 【点睛】 本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题. 5.C 【分析】 首先证明a∥b,推出∠4=∠5,求出∠5即可. 【详解】 解:∵∠1=∠2, ∴a∥b, ∴∠4=∠5, ∵∠5=180°﹣∠3=55°, ∴∠4=55°, 故选:C. 【点睛】 本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.C 【详解】 解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2, 故根据数轴可知, 故选C 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3 解析:A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环, 2021÷6=366……5, 第2021次碰到长方形的边的点的坐标为(7,4), 故选:A. 【点睛】 本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答. 九、填空题 9.-2 【分析】 利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案. 【详解】 解:∵和|y-2|互为相反数, ∴, ∴x+1=0,y-2=0, 解得:x=-1,y=2, ∴xy 解析:-2 【分析】 利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案. 【详解】 解:∵和|y-2|互为相反数, ∴, ∴x+1=0,y-2=0, 解得:x=-1,y=2, ∴xy=-1×2=-2 故答案为:-2. 【点睛】 本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0. 十、填空题 10.【分析】 根据点坐标关于y轴对称的变换规律即可得. 【详解】 点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变, 则点关于y轴对称的点的坐标是, 故答案为:. 【点睛】 本题考查了点坐标 解析: 【分析】 根据点坐标关于y轴对称的变换规律即可得. 【详解】 点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变, 则点关于y轴对称的点的坐标是, 故答案为:. 【点睛】 本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键. 十一、填空题 11.60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A 解析:60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°. 【点睛】 本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 十二、填空题 12.40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠D 解析:40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠DAE+∠CAB=180°-∠DAC=90° ∴∠1+∠2=90° ∴∠2=90°-∠1=40° 故答案为:40. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 十三、填空题 13.【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 解析:【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 十四、填空题 14.255 【分析】 根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:∵,,, ∴对144只需进行3次操作 解析:255 【分析】 根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:∵,,, ∴对144只需进行3次操作后变为1, ∵,,, ∴对255只需进行3次操作后变为1, 从后向前推,找到需要4次操作得到1的最小整数, ∵,, , , ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:3,255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力. 十五、填空题 15.或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3 解析:或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2, 当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去), 综上,x的值为2或, 故答案为2或. 【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 十六、填空题 16.(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,- 解析:(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…, 可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4 ∵2021÷8=252…5, ∴的坐标为(252×4+2,-1), ∴点的坐标是是(1010,-1). 故答案为:(1010,-1). 【点睛】 本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般. 十七、解答题 17.(1)0;(2)4 【分析】 (1)根据绝对值的性质去绝对值然后合并即可; (2)根据乘法分配律计算即可. 【详解】 (1)解原式= =0; (2)解原式= =3+1 解析:(1)0;(2)4 【分析】 (1)根据绝对值的性质去绝对值然后合并即可; (2)根据乘法分配律计算即可. 【详解】 (1)解原式= =0; (2)解原式= =3+1 =4. 故答案为(1)0;(2)4. 【点睛】 本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键. 十八、解答题 18.(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出 解析:(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出x的值. 【详解】 解:(1)x3=0.008, 则x=0.2; (2)x3-3= 则x3=3+ 故x3= 解得:x=; (3)(x-1)3=64 则x-1=4, 解得:x=5. 【点睛】 此题主要考查了立方根,正确把握立方根的定义是解题关键. 十九、解答题 19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平 解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平行), (两直线平行,同旁内角互补), (已知), (等式的性质), (同旁内角互补,两直线平行), (两直线平行,同位角相等), (已知), (等量代换), (同位角相等,两直线平行). 故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题 20.(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,- 解析:(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标. 【详解】 解:(1)∵a没有平方根, ∴a<0, ∴-a>0, ∵点B到x轴的距离是点A到x轴距离的3倍, ∴, ∵a+b=4, ∴, 解得:a=-2或a=1(舍), ∴b=6,此时点B的坐标为(-2,6); (2)∵点A的坐标为(a,-a),点B坐标为(a,4-a), ∴AB=4,AB与y轴平行, ∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍, ∴点A、点B在y轴的右侧,即a>0, ∴, 解得:a=或a=8, ∴B点坐标为(,)或(8,-4). 【点睛】 本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质. 二十一、解答题 21.(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题 解析:(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质 解析:(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论; (3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案. 【详解】 证明:(1)如图,过点作, , , , ,即, , ; (2)如图,过点作, , , , ,即, , , , , ; (3)如图,过点作,延长至点, , , , , 平分,平分, , 由(2)可知,, , 又, . 【点睛】 本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 二十四、解答题 24.;2.平行于同一条直线的两条直线平行;3.(1);(2). 【分析】 1、根据角度和计算得到答案; 2、根据平行线的推论解答; 3、(1)根据角平分线的性质及1的结论证明即可得到答案; (2)根据B 解析:;2.平行于同一条直线的两条直线平行;3.(1);(2). 【分析】 1、根据角度和计算得到答案; 2、根据平行线的推论解答; 3、(1)根据角平分线的性质及1的结论证明即可得到答案; (2)根据BE平分平分求出,过点E作EF∥AB,根据平行线的性质求出∠BEF=,,再利用周角求出答案. 【详解】 1、过点作 则有 因为 所以① 所以 所以 即; 故答案为:; 2、过点作 则有 因为 所以EF∥CD(平行于同一条直线的两条直线平行), 故答案为:平行于同一条直线的两条直线平行; 3、(1)∵BE平分平分 ∴, 过点E作EF∥AB,由1可得∠BED=, ∴∠BED=, 故答案为:; (2)∵BE平分平分 ∴, 过点E作EF∥AB,则∠ABE=∠BEF=, ∵ ∴EF∥CD, ∴, ∴, ∴. 【点睛】 此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 复习 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文