人教版八年级数学上学期压轴题模拟质量检测试卷带答案.doc
《人教版八年级数学上学期压轴题模拟质量检测试卷带答案.doc》由会员分享,可在线阅读,更多相关《人教版八年级数学上学期压轴题模拟质量检测试卷带答案.doc(19页珍藏版)》请在咨信网上搜索。
人教版八年级数学上学期压轴题模拟质量检测试卷带答案 1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式. (1)________; (2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由; (3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系. 2.在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足. (1)求A、B两点的坐标; (2)如图(1),点C为x轴负半轴一动点,,于D,交y轴于点E,求证:平分. (3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果. 3.请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 4.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可) (2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由. (3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形. 5.如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C. (1)证明:△ABE为等边三角形; (2)若CD⊥AB于点F,求线段CD的长; (3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等? 6.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0. (1)求a,b的值; (2)点P在直线AB的右侧;且∠APB=45°, ①若点P在x轴上(图1),则点P的坐标为 ; ②若△ABP为直角三角形,求P点的坐标. 7.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E. (1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标; (2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE; (3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度. 8.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD. (1)判断与的位置关系和数量关系,并证明; (2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明; (3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数. 【参考答案】 2.(1)0 (2)等腰三角形,见解析 (3)CG=2FG 【分析】(1)由可得,得出a、b的值即可求解; (2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论; 解析:(1)0 (2)等腰三角形,见解析 (3)CG=2FG 【分析】(1)由可得,得出a、b的值即可求解; (2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论; (3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论. (1) 解得 (2) 是等腰三角形,理由如下: 由点A(a,0)、点B(b,0)为x轴上两点,且 可得,OA=OB OC垂直平分AB , 是等腰三角形 (3) ,理由如下: 如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, . 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键. 3.(1),;(2)证明见解析;(3)不变化,. 【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标; (2)过点O作于M,于N,根据全等三角形的判定和性质解答即可; (3)由于点F是等 解析:(1),;(2)证明见解析;(3)不变化,. 【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标; (2)过点O作于M,于N,根据全等三角形的判定和性质解答即可; (3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BF.∠BFO=∠GFH,进而得出∠OFH=∠BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可. 【详解】解:(1)∵ ∴, ∴ ,即. ∴,. (2)如图,过点O作于M,于N, 根据题意可知. ∵, ∴, ∴. ∵,, ∴OA=OB=6. 在和中, , ∴. ∴, ,. ∴, ∴, ∴点O一定在∠CDB的角平分线上, 即OD平分∠CDB. (3)如图,连接OF, ∵是等腰直角三角形且点F为AB的中点, ∴,,OF平分∠AOB. ∴. 又∵, ∴, ∴. ∵, ∴. 又∵, ∴. 在和中 , ∴. ∴, ∴. 故不发生变化,且. 【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题. 4.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方 解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型. 5.(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运 解析:(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可. 【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (2)如图2, ∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=, ∴∠DBA=∠CAE, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (3)如图3, 由(2)可知,△ADB≌△CEA, ∴BD=AE,∠DBA=∠CAE, ∵△ABF和△ACF均为等边三角形, ∴∠ABF=∠CAF=60°,BF=AF, ∴∠DBA+∠ABF=∠CAE+∠CAF, ∴∠DBF=∠FAE, ∵在△DBF和△EAF中, , ∴△DBF≌△EAF(SAS), ∴DF=EF,∠BFD=∠AFE, ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°, ∴△DEF为等边三角形. 【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键. 6.(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论; (2)由(1)知∠ABE 解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论; (2)由(1)知∠ABE=∠BEA=∠EAB=60°,进而得出∠AOF=30°,利用含30°角的直角三角形的性质得到AF、OF的长.再证明∠ACF=∠AOF=30°,∠D=30°,同理得出CF、DF的长,进而可得出结论. (3)设运动的时间为t秒.然后分四种情况讨论:①当点P、Q分别在y轴、x轴上时,;②当点P、Q都在y轴上时,;③当点P在x轴上,Q在y轴且二者都没有提前停止时,;④当点P在x轴上,Q在y轴且点Q提前停止时,,列方程求解即可. 【详解】(1)在△AOB与△EOB中,∵∠AOB=∠EOB,OB=OB,∠EBO=∠ABO,∴△AOB≌△EOB (ASA),∴AO=EO=3,BE=AB=6,∴AE=BE=AB=6,∴△ABE为等边三角形. (2)由(1)知∠ABE=∠BEA=∠EAB=60°. ∵CD⊥AB,∴∠AOF=30°,∴AF=. 在Rt△AOF中,OF=. ∵∠CAH=∠BAO =60°,∴∠CAF =60°,∠ACF=∠AOF=30°,∴AO=AC. 又∵CD⊥AB,∴CF=. ∵AB=6,AF=,∴BF=. 在Rt△BDF中,∠DBF =60°,∠D=30°,∴BD=. 由勾股定理得:∴DF=,∴CD=. (3)设运动的时间为t秒. ①当点P、Q分别在y轴、x轴上时,,PO=QO得:,解得:(秒); ②当点P、Q都在y轴上时,,PO=QO得:,解得(秒); ③当点P在x轴上,Q在y轴且二者都没有提前停止时,,则PO=QO,得:,解得:,不合题意,舍去. ④当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒). 综上所述:当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【点睛】本题考查了全等三角形的判定、含30°角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质.正确分类讨论是解题的关键. 7.(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2). 【分析】(1)利用非负数的性质解决问题即可. (2)①根据等腰直角三角形的性质即可解决问题. ②分两种情形: 解析:(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2). 【分析】(1)利用非负数的性质解决问题即可. (2)①根据等腰直角三角形的性质即可解决问题. ②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可. 【详解】(1)∵a2+4a+4+b2﹣8b+16=0 ∴(a+2)2+(b﹣4)2=0 ∴a=﹣2,b=4. (2)①如图1中, ∵∠APB=45°,∠POB=90°, ∴OP=OB=4, ∴P(4,0). 故答案为(4,0). ②∵a=﹣2,b=4 ∴OA=2OB=4 又∵△ABP为直角三角形,∠APB=45° ∴只有两种情况,∠ABP=90°或∠BAP=90° ①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C. ∴∠PCB=∠BOA=90°, 又∵∠APB=45°, ∴∠BAP=∠APB=45°, ∴BA=BP, 又∵∠ABO+∠OBP=∠OBP+∠BPC=90°, ∴∠ABO=∠BPC, ∴△ABO≌△BPC(AAS), ∴PC=OB=4,BC=OA=2, ∴OC=OB﹣BC=4﹣2=2, ∴P(4,2). ②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D. ∴∠PDA=∠AOB=90°, 又∵∠APB=45°, ∴∠ABP=∠APB=45°, ∴AP=AB, 又∵∠BAD+∠DAP=90°, ∠DPA+∠DAP=90°, ∴∠BAD=∠DPA, ∴△BAO≌△APP(AAS), ∴PD=OA=2,AD=OB=4, ∴OD=AD﹣0A=4﹣2=2, ∴P(2,﹣2). 综上述,P点坐标为(4,2),(2,﹣2). 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题. 8.(1)A(0,1); (2)见解析; (3)不变,BP= 2. 【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易 解析:(1)A(0,1); (2)见解析; (3)不变,BP= 2. 【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标; (2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论; (3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:△CBE≌△BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPE≌△DPB,故BP=EP=2. (1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1); (2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE; (3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2. 【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形. 9.(1), ;(2), ;(3). 【分析】(1)先判断出,再判定,再判断, (2)先判断出,再得到同理(1)可得结论; (3)先判断出,再判断出,最后计算即可. 【详解】解:(1)与的位置关 解析:(1), ;(2), ;(3). 【分析】(1)先判断出,再判定,再判断, (2)先判断出,再得到同理(1)可得结论; (3)先判断出,再判断出,最后计算即可. 【详解】解:(1)与的位置关系是:,数量关系是. 理由如下: 如图1,延长交于点. 于, . ,, , ,,. , . AE⊥BC ∴, , . (2)与的位置关系是:,数量关系是. 如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G, , , 即. ,, , ,. AE⊥BC ∴, 又∵ , . (3)如图,线段AC与线段BD交于点F, 和是等边三角形, ,,,, , , 在和中, , ∴, , 与的夹角度数为. 【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 上学 压轴 模拟 质量 检测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文