八年级上学期压轴题模拟数学试题答案.doc
《八年级上学期压轴题模拟数学试题答案.doc》由会员分享,可在线阅读,更多相关《八年级上学期压轴题模拟数学试题答案.doc(17页珍藏版)》请在咨信网上搜索。
八年级上学期压轴题模拟数学试题答案 1.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE. (1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD=BE; ②求∠AEB的度数. (2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论. 2.请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 3.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称. (1)求△ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE; (3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明. 4.如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为. (1)求的取值范围. (2)当时,问与是否全等,并说明理由. (3)时,若为等腰三角形,求的值. 5.以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、. (1)试判断、的数量关系,并说明理由; (2)延长交于点试求的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由. 6.如图,是等边三角形,点在上,点在的延长线上,且. (1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论. (3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由. 7.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC. (1)如图1,若∠BAD=90°,AD=2,求CD的长度; (2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC; (3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程. 8.如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点. (1)求证:; (2)设,请用含的式子表示,并求的最大值; (3)当时,的取值范围为,求出,的值. 【参考答案】 2.(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析. 【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全 解析:(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析. 【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE; ②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数; (2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论. 【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°, ∴∠ACB=∠DCE=180°﹣2×50°=80°, ∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE, ∴∠ACD=∠BCE, ∵△ACB,△DCE都是等腰三角形, ∴AC=BC,DC=EC, 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS), ∴AD=BE. ②解:∵△ACD≌△BCE, ∴∠ADC=∠BEC, ∵点A、D、E在同一直线上,且∠CDE=50°, ∴∠ADC=180°﹣∠CDE=130°, ∴∠BEC=130°, ∵∠BEC=∠CED+∠AEB,∠CED=50°, ∴∠AEB=∠BEC﹣∠CED=80°. (2)结论:AE=2CF+BE. 理由:∵△ACB,△DCE都是等腰直角三角形, ∴∠CDE=∠CED=45°, ∵CF⊥DE, ∴∠CFD=90°,DF=EF=CF, ∵AD=BE, ∴AE=AD+DE=BE+2CF. 【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键. 3.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方 解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型. 4.(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点 解析:(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°. (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中, 即可得解. 【详解】解:(1)由已知条件得: AC=12,OB=6 ∴ (2)过E作EF⊥x轴于点F,延长EA交y轴于点H, ∵△BDE是等腰直角三角形, ∴DE=DB, ∠BDE=90°, ∴ ∵ ∴ ∴ ∵EF轴, ∴ ∴DF=BO=AO,EF=OD ∴AF=EF ∴ ∴∠BAE=90° (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长, ∵,OA=6, ∴OM+ON=3 【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键. 5.(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形 【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可; (2)根据题意利用全等三角形的判定定理(SAS),进行 解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形 【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可; (2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可; (3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算. 【详解】(1)依题意, , . (2)时,与全等, 证明:时,,,在和中, ∵,,点是的中点, ,,, (SAS). (3)①当时,有; ②当时, ∵, ∴, ∴ 有, ∵, ∴(舍去); ③当时, ∵, ∴, ∴ 有, ∴; 综上,当或时,为等腰三角形. 【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键. 6.(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△ 解析:(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE; (2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°; (3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°. 【详解】(1)∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,∠BAD=∠EAC=90°,AD=AE, ∵在△ADB和△AEC中, ∴△ADB≌△AEC(SAS),∴BD=CE; (2)∵△ADB≌△AEC,∴∠ACE=∠ABD, 而在△CDF中,∠BFC=180°-∠ACE-∠CDF, 又∵∠CDF=∠BDA, ∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°; (3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下: ∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠EAD=90°, ∵∠BAC+∠CAD=∠EAD+∠CAD, ∴∠BAD=∠CAE, 在△ADB和△AEC中, , ∴△ADB≌△AEC(SAS), ∴BD=CE,∠ACE=∠DBA, ∴∠BFC=∠DAB=90°. 【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答. 7.(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F, 解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案. (3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE. 【详解】证明:是等边三角形, 为中点, ,, ; (2)成立, 如图乙,过作,交于, 则是等边三角形, , , ,, 在和中 , 即 如图3,过点作,交的延长线于点, 是等边三角形,也是等边三角形, , , 在和中, 【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形. 8.(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2 解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2; (2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC; (3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC. 如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC. 【详解】(1)∵, ∴ 在Rt△BAD和Rt△BCD中, ∴Rt△BAD≌Rt△BCD(HL) ∴AD=DC=2 ∴DC=2 (2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∵ ∴ ∴ ∴ (3)(2)中结论不成立,应该是: 在CD延长线上找一点K,使得KC=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∴ ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∴ 【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形. 9.(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥ 解析:(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值. (3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值. (1) 解:在和中,如图1 即 (2) 解: 当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值 (3) 解:如图2,设则 为与的角平分线的交点 即 【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上学 压轴 模拟 数学试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文