数学八年级下册数学期末试卷综合测试卷(word含答案).doc
《数学八年级下册数学期末试卷综合测试卷(word含答案).doc》由会员分享,可在线阅读,更多相关《数学八年级下册数学期末试卷综合测试卷(word含答案).doc(30页珍藏版)》请在咨信网上搜索。
数学八年级下册数学期末试卷综合测试卷(word含答案) 一、选择题 1.二次根式中字母x的取值可以是( ) A.x=0 B.x=1 C.x=2 D.x=5 2.下列语句不能判定是直角三角形的是( ) A. B. C. D. 3.如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是( ) A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC 4.一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( ) A.众数 B.平均数 C.中位数 D.方差 5.如图,已知点E、F、G、H分别是矩形ABCD各边的中点,则四边形EFGH是( ) A.矩形 B.菱形 C.矩形或菱形 D.不能确定的 6.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为( ) A.30° B.45° C.60° D.75° 7.如图,在中,,,,点为边上任意一点过点分别作于点,于点,则线段的最小值是( ) A.2 B.2.4 C.3 D.4 8.如图,已知A(3,1)与B(1,0),PQ是直线上的一条动线段且(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为( ) A.(,) B.(,) C.(0,0) D.(1,1) 二、填空题 9.若二次根式有意义,则x的取值范围是________. 10.一个菱形的两条对角线的长分别为3和6,这个菱形的面积是______. 11.如图,以的两条直角边和斜边为边长分别作正方形,其中正方形、正方形的面积分别为25、144,则阴影部分的面积为______. 12.如图,长方形中,,,将此长方形折叠,使点B与点D重合,折痕为,则的面积是__________. 13.已知一次函数y=kx+b图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.在四边形中,,.请再添加一个条件,使四边形是菱形.你添加的条件是_______.(写出一种即可) 15.直线y=x+3与两坐标轴围成的三角形面积是 __________________. 16.如图,在矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则AE的取值范围是_______. 三、解答题 17.计算: (1). (2). 18.如图,一艘渔船正以30海里/时的速度由西向东追赶鱼群,在处看见小岛在船的北偏东60°方向上,40分钟后,渔船行至处,此时看见小岛在渔船的北偏东30°方向上. (1)求处与小岛之间的距离; (2)渔船到达处后,航向不变,继续航行多少时间与小岛的距离恰好为20海里? 19.阅读探究 小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积. 小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法, (1)图1中的面积为________. 实践应用 参考小明解决问题的方法,回答下列问题: (2)图2是一个的正方形网格(每个小正方形的边长为1). ①利用构图法在答题卡的图2中画出三边长分别为,,的格点. ②的面积为________(写出计算过程). 拓展延伸 (3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空). 20.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD, 求证:四边形OCED是菱形. 21.阅读理解题: 定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似. 例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i; (1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i; 根据以上信息,完成下列问题: (1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ; (2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i); (3)已知a+bi=(a,b为实数),求的最小值. 22.某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示. (1)求y与x之间的函数关系式; (2)当每千克干果降价3元时,超市获利多少元? 23.已知如图1,四边形是正方形, . 如图1,若点分别在边上,延长线段至,使得,若求的长; 如图2,若点分别在边延长线上时,求证: 如图3,如果四边形不是正方形,但满足且,请你直接写出的长. 24.如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0). (1)求直线AB的函数表达式; (2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标; (3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由. 25.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足. (1)∠EAF= °(直接写出结果不写解答过程); (2)①求证:四边形ABCD是正方形. ②若BE=EC=3,求DF的长. (3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是 (直接写出结果不写解答过程). 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式的被开方数是非负数得到,求解即可. 【详解】 解:由题意,得, 解得, 故可以取, 故选:D. 【点睛】 考查了二次根式的意义和性质,解题的关键是掌握概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 2.B 解析:B 【分析】 由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】 解:A、由,可得,故是直角三角形,不符合题意; B、∵,∴∠C=180°×,故不是直角三角形,符合题意; C、32+42=52,能构成直角三角形,不符合题意; D、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,不符合题意; 故选:B. 【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 3.C 解析:C 【解析】 【分析】 根据题意利用平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形进行分析判断即可. 【详解】 解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形. 故选:C. 【点睛】 本题主要考查平行四边形的判定定理.熟练掌握判定定理:“一组对边平行且相等的四边形是平行四边形.”以及应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形. 4.A 解析:A 【解析】 【分析】 依据平均数、中位数、众数、方差的定义即可得到结论. 【详解】 解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意; B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意; C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意; D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意; 故选:A. 【点睛】 本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键. 5.B 解析:B 【分析】 根据矩形中,、、、分别是、、、的中点,利用三角形中位线定理证得,然后利用四条边都相等的四边形是菱形即可判定. 【详解】 解:四边形是菱形; 理由:如图,连接,, 、、、分别是、、、的中点, ,,, 同理,,,,, ∵在矩形中, , , 四边形是菱形. 故选:. 【点睛】 此题主要考查学生对菱形的判定、三角形中位线定理和矩形的性质的理解和掌握,证明此题的关键是正确利用三角形中位线定理进行证明. 6.D 解析:D 【解析】 【分析】 连接,由菱形的性质及,得到为等边三角形,为的中点,利用三线合一得到为角平分线,得到,,,进而求出,由折叠的性质得到,利用三角形的内角和定理即可求出所求角的度数. 【详解】 解:连接,如图所示: ∵四边形为菱形, ∴, ∵, ∴为等边三角形,,, ∵为的中点, ∴为的平分线,即, ∴, ∴由折叠的性质得到, 在中,. 故选:D 【点睛】 此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键. 7.B 解析:B 【解析】 【分析】 求出四边形PECF是矩形,根据矩形的性质得出EF=CP,根据垂线段最短得出CP⊥AB时,CP最短,根据三角形的面积公式求出此时CP值即可. 【详解】 解:连接CP, ∵PE⊥AC,PF⊥BC,∠ACB=90°, ∴∠PEC=∠ACB=∠PFC=90°, ∴四边形PECF是矩形, ∴EF=CP, 当CP⊥AB时,CP最小,即EF最小, 在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5, 由三角形面积公式得:AC×BC=AB×CP, CP=, 即EF的最小值是=2.4, 故选:B. 【点睛】 本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键. 8.A 解析:A 【分析】 作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,求出直线解析式,与y=x组成方程组,即可求出Q点的坐标. 【详解】 解:作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,如下图所示. ∵,,∴四边形是平行四边形, ∴, ∵且, ∴当值最小时,值最小. 根据两点之间线段最短,即三点共线时,值最小. ∵(0,1),(2,0),∴直线的解析式, ∴,即, ∴Q点的坐标为(,). 故答案选A. 【点睛】 本题主要考查了一次函数图像上点的坐标特征、最短路径问题. 二、填空题 9. 【解析】 【分析】 根据二次根式被开放数为非负数,分式的分母不为零求解即可. 【详解】 解:∵二次根式有意义, ∴2-x>0,解得:x<2. 故答案为:x<2. 【点睛】 本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键. 10.9 【解析】 【分析】 根据菱形面积的计算公式:两对角线乘积的一半,即可计算出面积. 【详解】 故答案为:9. 【点睛】 本题考查了菱形的性质及面积计算,关键是掌握菱形面积等于两对角线乘积的一半. 11.B 解析:139 【解析】 【分析】 根据勾股定理可得正方形BCMN的面积为25+144=169,再求出Rt△ABC的面积,即可求解. 【详解】 如图,∵正方形、正方形的面积分别为25、144, ∴正方形BCMN的面积为25+144=169,AB=5,AC=12 ∴阴影部分的面积为169-×5×12=169-30=139 故答案为:139. 【点睛】 此题主要考查勾股定理,解题的关键是熟知勾股定理几何证明方法. 12.E 解析: 【分析】 首先翻折方法得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积. 【详解】 解:∵长方形折叠,使点B与点D重合, ∴ED=BE,∠A, 设AE=xcm,则ED=BE=(9﹣x)cm, 在Rt△ABE中, , ∴, 解得:x=4, ∴△ABE的面积为:3×4×=6(), 故答案为. 【点睛】 本题考查了折叠的性质,长方形的性质,勾股定理的运用;解题的关键是熟练掌握折叠的性质,找准折叠前后相等的角和边. 13.y=-x+5 【分析】 由直线y=kx+b经过(0,5)、(2,3)两点,代入可求出函数关系式. 【详解】 解:把点(0,5)和点(2,3)代入y=kx+b得 ,解得:, 所以一次函数的表达式为y=-x+5, 故答案为:y=-x+5. 【点睛】 此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键. 14.A 解析:AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD 【分析】 由在四边形ABCD中,AB=DC,AD=BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案. 【详解】 解:∵在四边形ABCD中,AB=DC,AD=BC, ∴四边形ABCD是平行四边形, ∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形; 当AC⊥BD时,四边形ABCD是菱形. 故答案为:AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD. 【点睛】 此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键. 15.【分析】 利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积. 【详解】 解:当x=0时,y=3, ∴直线 解析: 【分析】 利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积. 【详解】 解:当x=0时,y=3, ∴直线y=x+3与y轴的交点坐标为(0,3); 当y=0时,x+3=0,解得:x=﹣3, ∴直线y=x+3与x轴的交点坐标为(﹣3,0). ∴直线y=x+3与两坐标轴围成的三角形面积为×|﹣3|×3=. 故答案为:. 【点睛】 本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键. 16.【分析】 利用极端原理求解:当BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,再在△BEP中使用勾股定理求出EP的长,即AE的 解析: 【分析】 利用极端原理求解:当BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,再在△BEP中使用勾股定理求出EP的长,即AE的长;当BP最大时,E、B重合,根据折叠的性质即可得到EP=BP=AB=6. 【详解】 解:如图: 当F、D重合时,BP的值最小,对应的AE的值最大, 根据折叠的性质知:AF=PF=10; 在Rt△PFC中,PF=10,FC=6,则PC=8; ∴BP=10-8=2, 设BE=x,则AE=EP=6-x, 在Rt△BEP中,由勾股定理有:BE²+BP²=EP²,代入数据: 即:x²+2²=(6-x)²,解得x=, 故AE=EP=6-x=; ②当E、B重合时,BP的值最大;根据折叠的性质即可得到EP=BP=AB=6,即AE的最大值为6. 故答案为:. 【点睛】 此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键. 三、解答题 17.(1);(2) 【分析】 (1)根据二次根式的除法法则计算,二次根式的性质化简即可; (2)根据二次根式的乘法以及二次根式的加减法运算进行计算即可 【详解】 (1) ; (2) . 【点睛】 解析:(1);(2) 【分析】 (1)根据二次根式的除法法则计算,二次根式的性质化简即可; (2)根据二次根式的乘法以及二次根式的加减法运算进行计算即可 【详解】 (1) ; (2) . 【点睛】 本题考查了二次根式的混合运算,掌握二次根式的性质以及二次根式的运算法则是解题的关键. 18.(1)20海里;(2)小时 【分析】 (1)作BH⊥AC于H.首先证明AB=BC,AH=HC,求出HC即可解决问题; (2)作CG⊥AB交AB的延长线于G,可得△BCF是等边三角形,进而即可求解. 解析:(1)20海里;(2)小时 【分析】 (1)作BH⊥AC于H.首先证明AB=BC,AH=HC,求出HC即可解决问题; (2)作CG⊥AB交AB的延长线于G,可得△BCF是等边三角形,进而即可求解. 【详解】 解:(1)作BH⊥AC于H. ∵∠CBG=∠CAB+∠BCA,∠CAB=30°,∠CBG=60°, ∴∠ACB=∠BAC=30° ∴BA=BC=30×=20(海里). ∵BH⊥AC, ∴AH=HC=10海里, ∴AC=2AH=20海里; (2)作CG⊥AB交AB的延长线于G, 设渔船到达B处后,航向不变,继续航行到F与小岛C的距离恰好为20海里. 即CF=20海里, ∴BC=CF, ∵∠CBF=60°, ∴△BCF是等边三角形, ∴BF=20, ∴20÷30=(小时), ∴继续航行小时与小岛C的距离恰好为20海里. 【点睛】 本题考查了解直角三角形的应用−−方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想. 19.(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31. 【解析】 【分析】 (1)根据网格可直接用割补法求解三角形的面积; (2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;② 解析:(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31. 【解析】 【分析】 (1)根据网格可直接用割补法求解三角形的面积; (2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积; (3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可. 【详解】 解:(1)△ABC的面积为:, 故答案为:; (2)①作图如下(答案不唯一): ②的面积为:, 故答案为:8; (3)在网格中作出,, 在与中, , ∴, ∴, , 六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积 , 故答案为:31. 【点睛】 本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键. 20.见解析 【分析】 首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论. 【详解】 证明:∵DE 解析:见解析 【分析】 首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论. 【详解】 证明:∵DE∥AC,CE∥BD, ∴四边形OCED是平行四边形. ∵四边形ABCD是矩形,∴OC=OD=AC=BD ∴四边形OCED是菱形. 21.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【解析】 【分析】 (1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所 解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【解析】 【分析】 (1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案; (3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案. 【详解】 (1)i3=i2•i=﹣1×i=﹣i, i4=i2•i2=﹣1×(﹣1)=1, 设S=i+i2+i3+…+i2021, iS=i2+i3+…+i2021+i2022, ∴(1﹣i)S=i﹣i2022, ∴S=, 故答案为﹣i,1,; (2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i) =3﹣4i+3i﹣4i2﹣(4﹣9i2) =3﹣i+4﹣4﹣9 =﹣i﹣6; (3)a+bi====4+3i, ∴a=4,b=3, ∴=, ∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离, ∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离, ∴A'B==25, ∴的最小值为25. 【点睛】 此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键. 22.(1)y=10x+100(0<x<20);(2)当每千克干果降价3元时,超市获利2210元 【分析】 (1)由待定系数法即可得到函数的解析式; (2)根据(1)的解析式将x=3代入求出销售量,再根据 解析:(1)y=10x+100(0<x<20);(2)当每千克干果降价3元时,超市获利2210元 【分析】 (1)由待定系数法即可得到函数的解析式; (2)根据(1)的解析式将x=3代入求出销售量,再根据每千克利润×销售量=总利润列式求解即可. 【详解】 解:(1)设y与x之间的函数关系式为:y=kx+b, 把(2,120)和(4,140)代入得,, 解得:, ∴y与x之间的函数关系式为:y=10x+100(0<x<20); (2)根据题意得,销售量y=10×3+100=130, (60-3-40)×130=2210(元), 答:当每千克干果降价3元时,超市获利2210元. 【点睛】 本题考查的是一次函数的应用,解题的关键是利用待定系数法求出y与x之间的函数关系式,此类题目主要考查学生分析、解决实际问题能力,又能较好的考查学生“用数学”的意识. 23.(1);(2)见解析;(3) 【分析】 (1)先用SAS证ABG≌ADF,可得AG=AF,∠BAG=∠DAF,又可证∠EAG=∠EAF,故可用SAS证GAE≌FAE,EF=GE,即EF长度可求; ( 解析:(1);(2)见解析;(3) 【分析】 (1)先用SAS证ABG≌ADF,可得AG=AF,∠BAG=∠DAF,又可证∠EAG=∠EAF,故可用SAS证GAE≌FAE,EF=GE,即EF长度可求; (2)在DF上取一点G,使得DG=BE, 连接AG,先用SAS证ABE≌ADG,可得AE=AG,∠BAE=∠DAG,又可证∠EAF=∠GAF,故可用SAS证AEF≌AGF,可得EF=GF,且DG=BE,故EF=DF-DG=DF-BE; (3)在线段DF上取BE=DG,连接AG,求证∠ABE=∠ADC,即可用SAS证ABE≌ADG,可得AE=AG,∠BAE=∠DAG,又可证∠EAF=∠GAF,故可用SAS证AEF≌AGF,可得EF=GF,设BE=x,则CE= 7+x,EF=18-x,根据勾股定理:,即可求得BE的长度. 【详解】 解:(1)证明:如图1所示,在正方形ABCD中,AB=AD,∠BAD=90°, 在ABG和ADF中, ∴ABG≌ADF(SAS), ∴AG=AF,∠BAG=∠DAF, 又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°, ∴∠EAG=∠FAG-∠EAF=45°=∠EAF, 在GAE和FAE中, ∴GAE≌FAE(SAS), ∴EF=GE=GB+BE=2+3=5; (2)如下图所示,在DF上取一点G,使得DG=BE, 连接AG, ∵四边形ABCD是正方形,故AB=AD,∠ABE=∠ADG=90°, 在ABE和ADG中, ∴ABE≌ADG(SAS), ∴AE=AG,∠BAE=∠DAG, ∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°, ∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF和AGF中, ∴AEF≌AGF(SAS), ∴EF=GF,且DG=BE, ∴EF=DF-DG=DF-BE; (3)BE=5, 如下图所示,在线段DF上取BE=DG,连接AG, ∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°, ∴∠ABE=∠ADC, 在ABE和ADG中, ∴ABE≌ADG(SAS), ∴AE=AG,∠BAE=∠DAG, ∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°, ∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF和AGF中, ∴AEF≌AGF(SAS), ∴EF=GF, 设BE=x,则CE=BC+BE =7+x,EF=GF=DC+CF-DG= DC+CF-BE=18-x, 在直角三角形ECF中,根据勾股定理:, 即:,解得x=5, ∴BE=x=5. 【点睛】 本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题. 24.(1);(2);(3)或或 【解析】 【分析】 (1)直接利用待定系数法,即可得出结论; (2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN, 解析:(1);(2);(3)或或 【解析】 【分析】 (1)直接利用待定系数法,即可得出结论; (2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,设F(m,n),进而建立方程组求解,即可得出结论; (3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论;②当时,当点E在AB上方时,根据AE∥BC,即可得出结论;③当点E在AB下方时,过点作轴于,过点作轴,过点作,证明,即可得出结论. 【详解】 (1)设直线的函数表达式为, 直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0), 直线的函数表达式为; (2)如图,过点分别引轴的垂线,交轴于两点, ∵点A(0,3),点B(-4,0), ∴OA=3,OB=4, ∴AB=5, 由折叠知,AD=OA=3, 设 , 解得: 在上, 解得, , 过点F作FM⊥x轴于M,延长HD交FM于N, ∴∠BMF=∠FND=90°, ∴∠BFM+∠FBM=90°, ∵△BFD是等腰直角三角形, ∴BF=DF,∠BFD=90°, ∴∠BFM+∠DFN=90°, ∴∠FBM=∠DFN, ∴△BMF≌△FND(AAS), ∴BM=FN,FM=DN, 设F(m,n), 则 ; (3)设OC=a,则BC=4-a, 由折叠知,∠BDC=∠ADC=∠AOC=90°,CD=OC=a, 在Rt△BDC中,, ∴, ∴a=, , ∵点A,B,E为顶点的三角形与△ABC全等, ①当△ABC≌△ABE'时, ∴BE'=BC,∠ABC=∠ABE', 连接CE'交AB于D, 则CD=E'D,CD⊥AB,由(1)知, 设E'(b,c), ∴ ∴, ∴; ②当△ABC≌BAE时,当点E在AB上方时, ∴AC=BE,BC=AE,, ∴AE∥BC, ∴; ③当点E在AB下方时,AC=BE'',BC=AE'', , , 当时, , ,, 过点作轴于,过点作轴,过点作, ,, , , 即, , , , 点,, ,=, , ∴, 满足条件的点E的坐标为或或. 【点睛】 本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键. 25.(1)45;(2)①见解析;②DF的长为2;(3) 【分析】 (1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠ 解析:(1)45;(2)①见解析;②DF的长为2;(3) 【分析】 (1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠AEF+∠AFE=(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论; (2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形; ②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论; (3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得出方程,解方程即可. 【详解】 解:(1)∵∠C=90°, ∴∠CFE+∠CEF=90°, ∴∠DFE+∠BEF=360°﹣90°=270°, ∵AF平分∠DFE,AE平分∠BEF, ∴∠AFE=DFE,∠AEF=BEF, ∴∠AEF+∠AFE=(∠DFE+∠BEF)=270°=135°, ∴∠EAF=180°﹣∠AEF﹣∠AFE=45°, 故答案为:45; (2)①作AG⊥EF于G,如图1所示: 则∠AGE=∠AGF=90°, ∵AB⊥CE,AD⊥CF, ∴∠B=∠D=90°=∠C, ∴四边形ABCD是矩形, ∵∠CEF,∠CFE外角平分线交于点A, ∴AB=AG,AD=AG, ∴AB=AD, ∴四边形ABCD是正方形; ②设DF=x, ∵BE=EC=3, ∴BC=6, 由①得四边形ABCD是正方形, ∴BC=CD=6, 在Rt△ABE与Rt△AGE中, , ∴Rt△ABE≌Rt△AGE(HL), ∴BE=EG=3, 同理,GF=DF=x, 在Rt△CEF中,EC2+FC2=EF2, 即32+(6﹣x)2=(x+3)2, 解得:x=2, ∴DF的长为2; (3)解:如图2所示: 把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G, 由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2, ∴MG=DG=MP=PH=5, ∴GQ=3, 设MR=HR=a,则GR=5﹣a,QR=a+2, 在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2, 解得:a=,即HR=; 故答案为:. 【点睛】 本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期末试卷 综合测试 word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文