苏州大学实验学校八年级上册期末数学试卷.doc
《苏州大学实验学校八年级上册期末数学试卷.doc》由会员分享,可在线阅读,更多相关《苏州大学实验学校八年级上册期末数学试卷.doc(20页珍藏版)》请在咨信网上搜索。
苏州大学实验学校八年级上册期末数学试卷 一、选择题 1、下列图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 2、中科院发现“绿色”光刻胶,精度可达0.00000000014米,数字0.00000000014用科学记数法可表示为( ) A. B. C. D. 3、下列计算正确的是( ) A. B. C. D. 4、下列分式中一定有意义的是( ) A. B. C. D. 5、下列从左到右的变形中属于因式分解的是( ) A. B. C. D. 6、下列各式中的变形,错误的是( ) A. B. C. D. 7、如图所示,,,要使,需添加条件是( ) A. B. C. D. 8、关于x的方程有增根,则m的值是( ) A.0 B.2或3 C.2 D.3 9、在中,,,则,的度数依次是( ) A., B., C., D., 二、填空题 10、如图, 为线段上一动点(不与点、重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连接,以下五个结论:①,②,③,④,⑤,一定成立的是( ) A.①②③④ B.①②④⑤ C.①②③⑤ D.①③④⑤ 11、如果分式的值为0,则的值为___________. 12、若点和点关于y轴对称,则______. 13、已知,,______. 14、计算:______. 15、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________. 16、若是完全平方式,则的值为______. 17、(1)已知x+y=4,xy=3,则x2+y2的值为 _____. (2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为 _____. (3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为 _____. 18、如图,在△ABC中,∠ACB=90,AC=6,BC=7、点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为_______. 三、解答题 19、(1)计算:; (2)分解因式:. 20、解分式方程. 21、如图,点B、F、C、E在一条直线上,BF=EC,AC=DF,AC∥DF.求证:∠A=∠D. 22、(1)如图1,求证:. (2)如图2,、的二等分线(即角平分线)BF、CF交于点F.已知,,求∠BFC的度数; (3)如图3,、分别为、的2021等分线(i=1,2,3……,2019,2020)它们的交点从上到下依次为、、…….已知,,则______度. 23、先阅读下面的材料,然后解答问题. 通过计算,发现:方程的解为,; 方程的解为,; 方程的解为,;… (1)观察猜想:关于x的方程的解是 ; (2)利用你猜想的结论,解关于x的方程; (3)实践运用:对关于x的方程的解,小明观察得“”是该方程的一个解,则方程的另一个解= ,请利用上面的规律,求关于x的方程的解. 24、观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于),你发现结果有什么规律? ; ; ; ; (1)设这两个数的十位数字为,个位数字分别为和,请用含和的等式表示你发现的规律; (2)请验证你所发现的规律; (3)利用你发现的规律直接写出下列算式的答案. ; ; ; . 25、如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离. 一、选择题 1、A 【解析】A 【分析】根据中心对称图形和轴对称图形的定义逐一分析即可. 【详解】解:A.既是中心对称图形又是轴对称图形,符合题意; B.是轴对称图形但不是中心对称图形,不符合题意; C.是轴对称图形但不是中心对称图形,不符合题意; D.是中心对称图形但不是轴对称图形,不符合题意; 故选:A. 【点睛】本题主要考查了中心对称图形和轴对称图形的定义,理解并熟记定义是解答本题的关键. 2、D 【解析】D 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 000 14用科学记数法可表示为1.4×10﹣10, 故选:D. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【解析】C 【分析】根据同底数幂的乘法,整式的乘法,幂的乘方来计算求解. 【详解】解:A.,原选项计算错误,此项不符合题意; B.,原选项计算错误,此项不符合题意; C.,原选项计算正确,此项符合题意; D.,原选项计算错误,此项不符合题意. 故选:C. 【点睛】本题主要考查了同底数幂的乘法,整式乘法的运算法则,幂的乘方的运算法则,理解相关知识是解答关键. 4、C 【解析】C 【分析】根据分式有意义的条件:分母≠0,即可作答. 【详解】A:当x=0时,分母=0,不符合题意; B:当x=1或-1时,分母=0,不符合题意; C:无论x取何实数,分母都不等于0,符合题意; D:当x=-1时,分母=0,不符合题意; 故选:C 【点睛】本题主要考查了分式有意义的条件,熟练地掌握“当分母不等于0时分式有意义”是解题的关键. 5、D 【解析】D 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案. 【详解】解:A.,左边不是多项式,不是因式分解,故不合题意; B.,右边不是几个整式的积的形式,不符合因式分解的定义,故不符合题意; C.,是整式的乘法运算,故不合题意; D.,符合因式分解的定义,属于因式分解,故符合题意; 故选:D. 【点睛】本题主要考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,牢记定义是解题的关键. 6、B 【解析】B 【分析】根据分式的符号法则,可判断A、D,根据分式的基本性质可判断B、C. 【详解】解:A. 根据分式的符号法则分式的分子,分母,分式本身三处符号,任意改变两处的符号,分式的值不变,故选项A正确, B. 根据分式的基本性质,分子、分母都乘以或除以不为0的数或整式,而不是加或减数或整式,故选项B错误; C. 根据分式的基本性质,分子、分母都乘以或除以同一个不为0的数,分式的值不变,故选项C正确 D. 根据分式的符号法则分式的分子,分母,分式本身三处符号,任意改变两处的符号,分式的值不变,故选项D正确. 故选择B. 【点睛】本题考查分式的符号法则,和分式的基本性质将分式恒等变形,掌握分式的符号法则,和分式的基本性质是解题关键. 7、D 【解析】D 【分析】根据已知条件是两个三角形的两组对应边,所以需要添加的条件必须能得到这两边的夹角相等,整理得到角的可能情况,然后选择答案即可. 【详解】∵AB=BD,BC=BE, ∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC, 又∠ABE-∠DBE=∠DBC-∠DBE, 即∠ABD=∠CBE, ∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE. 综合各选项,D选项符合. 故选:D. 【点睛】本题考查了全等三角形的判定,根据两边确定出需添加的条件必须是这两边的夹角是解题的关键. 8、D 【解析】D 【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,求出x的值,代入整式方程即可求出m的值. 【详解】解:去分母得:, ∴, ∵关于x的方程有增根, ∴x-2=0, 解得:x=2 ∴. 故选:D. 【点睛】本题主要考查根据分式方程根的情况求参数的值.根据分式方程有增根求出x的值,并代入去分母后转化的整式方程中求m的值是解题的关键. 9、C 【解析】C 【分析】根据三角形的内角和等于180°可求解∠ABC的度数;利用三角形外角的性质可求解∠ABE的度数. 【详解】解:在△ABC中,∠C=90°,∠A=54.97°, ∴根据三角形内角和定理可得∠ABC=180°−∠C−∠A=180°−90°−54.97°=35.03°, 根据三角形外角性质可得∠ABE=∠A+∠C=54.97°+90°=144.97°, 故选:C. 【点睛】本题主要考查三角形的内角和定理,三角形外角的性质,掌握三角形的内角和定理及外角的性质是解题的关键. 二、填空题 10、B 【解析】B 【分析】根据等边三角形的性质可以得出E△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°,就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,根据∠AFD=∠EAB+∠CBD=∠CDB+∠CBD=∠ACD=60°,进而得出结论. 【详解】解:∵△ACD和△BCE是等边三角形, ∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°. ∵∠ACB=180°, ∴∠DCE=60°. ∴∠DCE=∠BCE. ∴∠ACD+∠DCE=∠BCE+∠DCE, ∴∠ACE=∠DCB. 在△ACE和△DCB中, , ∴△ACE≌△DCB(SAS), ∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC. 在△CEG和△CBH中, , ∴△CEG≌△CBH(ASA), ∴CG=CH,GE=HB, ∴△CGH为等边三角形, ∴∠GHC=60°, ∴∠GHC=∠BCH, ∴GH//AB. ∵∠AFD=∠EAB+∠CBD, ∴∠AFD=∠CDB+∠CBD=∠ACD=60°. ∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60° ∴∠DCH≠∠DHC, ∴CD≠DH, ∴AD≠DH. 综上所述,正确的有:①②④⑤. 故选B. 【点睛】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键. 11、1 【分析】分式的值为零时,分子等于零,即,据此求解即可. 【详解】解:∵分式的值为0, ∴. 解得. 此时分母,符合题意. 故答案是:1. 【点睛】本题主要考查了分式的值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零. 12、 【分析】由点和点关于y轴对称,列方程组先求解 再利用进行计算即可. 【详解】解: 点和点关于y轴对称, 解得: 故答案为: 【点睛】本题考查的是关于轴对称的两个点的坐标关系,同底数幂的乘法的逆用,积的乘方的逆用,二元一次方程组的解法,掌握以上基础知识是解本题的关键. 13、 【分析】原式整理成,再整体代入即可求解. 【详解】∵,, ∴ . 故答案为:. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 14、## 【分析】利用同底数幂的逆运算与积的乘方的逆运算把原式化为,再计算,从而可得答案. 【详解】解: 故答案为: 【点睛】本题考查的是同底数幂的乘法与积的乘方的逆运算,掌握“幂的运算法则与其逆运算的法则”是解本题的关键. 15、6 【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解. 【详解】解:作点E关于AD的对称点F,连接CF, ∵△ABC是等边三角形,AD是BC边上的中垂线, 【解析】6 【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解. 【详解】解:作点E关于AD的对称点F,连接CF, ∵△ABC是等边三角形,AD是BC边上的中垂线, ∴点E关于AD的对应点为点F, ∴CF就是EP+CP的最小值. ∵△ABC是等边三角形,E是AC边的中点, ∴F是AB的中点, ∴CF=AD=6, 即EP+CP的最小值为6, 故答案为5、 【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键. 16、或13 【分析】利用完全平方式的定义可得或,求解即可. 【详解】解:∵是完全平方式, ∴或, 解得或13, 故答案为:或12、 【点睛】本题考查利用完全平方式的定义求参数,掌握完全平方式的定义是解题 【解析】或13 【分析】利用完全平方式的定义可得或,求解即可. 【详解】解:∵是完全平方式, ∴或, 解得或13, 故答案为:或12、 【点睛】本题考查利用完全平方式的定义求参数,掌握完全平方式的定义是解题的关键. 17、10 9 5 【分析】(1)根据完全平方公式(x+y)2=x2+2xy+y2,把原式变形后求值; (2)先求出xy,再根据完全平方公式变形后求值; (3)先变形为[(x﹣2 【解析】 10 9 5 【分析】(1)根据完全平方公式(x+y)2=x2+2xy+y2,把原式变形后求值; (2)先求出xy,再根据完全平方公式变形后求值; (3)先变形为[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12,然后利用完全平方公式展开即可得到(x﹣2021)2的值. 【详解】解:(1)∵x+y=4,xy=3, ∴x2+y2=(x+y)2﹣2xy=16﹣6=9、 故答案为:10; (2)∵(x+y)2=25,x2+y2=17, ∴x2+y2+2xy﹣(x2+y2)=8, ∴xy=4, ∴(x﹣y)2=x2+y2﹣2xy=17﹣8=8、 故答案为:9; (3)∵(x﹣2020)2+(x﹣2022)2=12, ∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12, ∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12, ∴(x﹣2021)2=4、 故答案为:4、 【点睛】本题考查了完全平方公式,解题关键是通过对公式的变形,求出代数式的值. 18、5或2.5或6 【分析】分三种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;(3)当P在BC上,Q在AC上时,即A、Q重合时;得出关的方程,解方程求得的值 【解析】5或2.5或6 【分析】分三种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;(3)当P在BC上,Q在AC上时,即A、Q重合时;得出关的方程,解方程求得的值,进而求得的长. 【详解】解:当P在AC上,Q在BC上时, ∵∠ACB=90, ∴∠PCE+∠QCF=90°, ∵PE⊥l于E,QF⊥l于F. ∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°, ∴∠EPC=∠QCF, ∴△PCE≌△CQF, ∴PC=CQ, ∴6-t=8-3t,解得t=1, ∴CQ=8-3t=5; 当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC, 由题意得,6-t=3t-8, 解得t=3.5, ∴CQ=3t-8=2.5, 当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6, 综上,当△PEC与△QFC全等时,满足条件的CQ的长为5或2.5或6, 故答案为:5或2.5或5、 【点睛】本题考查了全等三角形判定与性质,根据题意得出关于的方程是解题的关键. 三、解答题 19、(1);(2) 【分析】(1)根据幂的乘方和积的乘方、单项式乘单项式的运算法则计算即可; (2)先运用提公因式法,再利用完全平方公式分解因式即可. 【详解】(1)原式, ; (2)原式, . 【点 【解析】(1);(2) 【分析】(1)根据幂的乘方和积的乘方、单项式乘单项式的运算法则计算即可; (2)先运用提公因式法,再利用完全平方公式分解因式即可. 【详解】(1)原式, ; (2)原式, . 【点睛】本题考查了整式的运算和分解因式.解决此类题目的关键是运用幂的乘方和积的乘方、单项式乘单项式的运算法则去括号,及熟练运用分解因式的方法. 20、【分析】按照去分母,解整式方程,检验的步骤解方程即可. 【详解】去分母得, 去括号合并同类项得, 系数化为1得, 经检验,是原分式方程的解. 【点睛】本题主要考查解分式方程,掌握解分式方程的步骤 【解析】 【分析】按照去分母,解整式方程,检验的步骤解方程即可. 【详解】去分母得, 去括号合并同类项得, 系数化为1得, 经检验,是原分式方程的解. 【点睛】本题主要考查解分式方程,掌握解分式方程的步骤并检验是否为增根是解题的关键. 21、证明见解析 【分析】先由平行线的性质得 ∠ACB=∠DFE,再证 BC = EF ,然后由 SAS 证△ABC≌△DEF ,即可得出结论. 【详解】证明:∵AC∥DF, ∴∠ACB=∠DFE, 又∵ 【解析】证明见解析 【分析】先由平行线的性质得 ∠ACB=∠DFE,再证 BC = EF ,然后由 SAS 证△ABC≌△DEF ,即可得出结论. 【详解】证明:∵AC∥DF, ∴∠ACB=∠DFE, 又∵BF=EC, ∴BF+FC=EC+FC, 即BC=EF, 在△ABC和△DEF中, , ∴△ABC≌△DEF(SAS), ∴∠A=∠D. 【点睛】本题考查了全等三角形的判定与性质以及平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键. 22、(1)见解析;(2);(3) 【分析】(1)延长BO交AC于D,由外角的性质可得∠BOC=∠B+∠A+∠C; (2)由(1)知,,由角平分线的性质和外角的性质即可求解; (3)由题意知:∠ABO10 【解析】(1)见解析;(2);(3) 【分析】(1)延长BO交AC于D,由外角的性质可得∠BOC=∠B+∠A+∠C; (2)由(1)知,,由角平分线的性质和外角的性质即可求解; (3)由题意知:∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,由三角形的外角性质可求解. 【详解】解:(1)如图1,延长BO交AC于D, ∴, , ∴, 即. (2)由(1)知, ∵∠ABE、∠ACE的二等分线(即角平分线)BF、CF交于点F. ∴, ∵,, ∴, ∴, ∴, ∴. (3)由题意知:∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO, ∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C, ∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC, 则∠ABO+∠ACO=(∠BO1000C﹣∠BAC), 代入∠BOC=(∠ABO+∠ACO)+∠BO1000C, ∴∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C, 解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC, ∵∠BOC=m°,∠BAC=n°, ∴∠BO1000C=m°+n°=()°; 故答案为:. 【点睛】此题考查了三角形的外角性质、角平分线的定义等知识,灵活运用这些性质解决问题是解题的关键. 23、(1), (2), (3);, 【分析】(1)根据题意可知规律:方程的解等于右边的整数和分数,方程的形式要和等式右边给出数的形式相同,按照此规律即可得出方程的解; (2)根据(1)的规律,得出,,解 【解析】(1), (2), (3);, 【分析】(1)根据题意可知规律:方程的解等于右边的整数和分数,方程的形式要和等式右边给出数的形式相同,按照此规律即可得出方程的解; (2)根据(1)的规律,得出,,解出即可得出方程的解; (3)根据(1)中的规律,即可得出另一个解;首先对方程进行整理,得出,然后按照(1)中的规律,解出即可得出结果. (1) 解:,. 故答案为:, (2) 解: ∵,, ∴,; (3) 解:; 整理,得:, 整理,得:, ∴,, ∴,. 【点睛】本题考查了分式方程的解,解本题的关键在正确理解题意找出方程与解之间的规律. 24、(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)见解析;(3)3016;4221;5625;9024、 【分析】(1)由题意得出每个数的积的规律是:十位数字乘以十 【解析】(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)见解析;(3)3016;4221;5625;9024、 【分析】(1)由题意得出每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,据此可得出结果; (2)利用整式的运算法则化简等式的左右两边,化简结果相等即可得出结论; (3)根据(1)中的结论计算即可. 【详解】解:(1)由已知等式知,每两个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位, ∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y); (2)∵等式左边=(10x+y)(10x+10-y)=(10x+y)[(10x-y)+10]=(10x+y)(10x-y)+10(10x+y)=100x2-y2+100x+10y; 等式右边=100x(x+1)+y(10-y)=100x2+100x+10y-y2=100x2-y2+100x+10y, ∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y); (3)根据(1)中的规律可知, 3016;4221;5625;9024、 故答案为:3016;4221;5625;9024、 【点睛】本题考查了规律型中数字的变化类,根据两数乘积的变化找出变化规律是解题的关键. 25、(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90° 【解析】(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏州大学 实验学校 年级 上册 期末 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文