八年级数学下册期末试卷(培优篇)(Word版含解析).doc
《八年级数学下册期末试卷(培优篇)(Word版含解析).doc》由会员分享,可在线阅读,更多相关《八年级数学下册期末试卷(培优篇)(Word版含解析).doc(25页珍藏版)》请在咨信网上搜索。
八年级数学下册期末试卷(培优篇)(Word版含解析) 一、选择题 1.若二次根式有意义,则x的值不可能是( ) A.3 B.﹣5 C.﹣4 D.0 2.△ABC的三边为a,b,c且(a+b)(a﹣b)=c2,则该三角形是( ) A.锐角三角形 B.以c为斜边的直角三角形 C.以b为斜边的直角三角形 D.以a为斜边的直角三角形 3.下列命题中,是真命题的是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是矩形 C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形 4.为迎接建党一百周年,某班开展“我最想看的红色电影”投票活动,参选的五部电影的得票数分别是9,10,11,11,8,则这组得票数据的中位数,众数分别是( ) A.10,11 B.11,10 C.11,11 D.10.5,11 5.如图,四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,E,F分别是AB,CD的中点,若AC=BD=2,则EF的长是( ) A.2 B. C. D. 6.如图,在三角形纸片ABC中,∠A=60°,∠B=70°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为( ) A.50° B.118° C.100° D.90° 7.如图,已知在中,,,分别是边,,的中点,,,则四边形AFDE的周长等于( ) A.18 B.16 C.14 D.12 8.如图1,动点P从菱形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D.设点P的运动时间为(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则a的值为( ) A. B. C.2 D.2 二、填空题 9.在函数y=中,自变量x的取值范围是_______. 10.如图,菱形周长为40,对角线,则菱形的面积为______. 11.若一直角三角形的两直角边长为,1,则斜边长为_____. 12.如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________. 13.若直线y=2x+1平移后过点(-1,2),则平移后直线的解析式为___________________. 14.如图,矩形ABCD中,对角线AC和BD交于点O,过O的直线分别交AD和BC于点E、F,已知AD=4 cm,图中阴影部分的面积总和为6 cm 2,则矩形的对角线AC长为___cm. 15.如图,在平面直角坐标系中,点在直线图象上,过点作轴平行线,交直线于点,以线段为边在右侧作正方形,所在的直线交的图象于点,交的图象于点,再以线段为边在右侧作正方形依此类推,按照图中反应的规律,第个正方形的边长是_______. 16.如图,在平面直角坐标系,直线与轴交于点,以为一边在上方作等边,过点作平行于轴,交直线于点,以为一边在上方作等边,过点作平行于轴,交直线于点,以为一边在上方作等边,……,则的横坐标为__________. 三、解答题 17.计算下列各式的值 (1) (2) (3) (4) 18.如图,货船和快艇分别从码头A同时出发.其中,货船沿着北偏西54°方向以15海里/小时的速度匀速航行,快艇沿着北偏东36°方向以36海里/小时的速度航行,1小时后.两船分别到达B、C点.求B、C两点之间的距离. 19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A,B,E,F都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB为边的正方形ABCD; (2)在图中画出以EF为边的等腰三角形EFG,且△EFG的周长为; (3)在(1)(2)的条件下,连接CG,则线段CG的长为 . 20.如图,在中,,于点H,E是A上一点,过点B作,交的延长线于点F,连接,. (1)求证:四边形是菱形; (2)若,求的度数. 21.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的: 因为a===2-, 所以a-2=-. 所以(a-2)2=3,即a2-4a+4=3. 所以a2-4a=-1. 所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算: = - . (2)计算:+…+; (3)若a=,求4a2-8a+1的值. 22.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题: (1)放入一个小球量筒中水面升高 cm; (2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量筒中至少放入几个小球时有水溢出? 23.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF. (1)当t=1时,求BF的长度; (2)在点E运动的过程中,求D、F两点之间距离的最小值; (3)连接AF、DF,当△ADF是等腰三角形时,求t的值. 24.如图,点,过点做直线平行于轴,点关于直线对称点为. (1)求点的坐标; (2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式; (3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标. 25.如图,在矩形 ABCD中, AB=16 , BC=18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处. (I)若 AE=0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长; (II)若 AE=3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长; (III)若AE=8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式有意义的条件求出x的范围,进而得出答案. 【详解】 解:根据二次根式有意义的条件得:x+4≥0, ∴x≥﹣4, 故选:B. 【点睛】 本题考查了二次根式有意义的条件,能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围是解题的关键. 2.D 解析:D 【分析】 由题意可知:c2+b2=a2,此三角形三边关系符合勾股定理的逆定理. 【详解】 解:由题意,a2-b2=c2, ∴b2+c2=a2, 此三角形三边关系符合勾股定理的逆定理, 所以此三角形是以a为斜边的直角三角形. 故选:D. 【点睛】 考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形. 3.D 解析:D 【解析】 【分析】 根据矩形的判定方法对进行判断;根据正方形的判定方法对进行判断;根据平行四边形的判定方法对进行判断. 【详解】 解:、两条对角线相等的平行四边形是矩形,所以选项错误,不符合题意; 、两条对角线相等的平行四边形是矩形,所以选项错误,不符合题意; 、两条对角线互相垂直平分且相等的四边形是正方形,所以选项错误,不符合题意; 、两条对角线互相平分的四边形是平行四边形,所以选项正确,符合题意. 故选:D. 【点睛】 本题考查了命题与定理,解题的关键是掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 4.A 解析:A 【解析】 【分析】 根据中位数和众数的求解方法,求解即可. 【详解】 解:将这五部电影得票数从小到大排列,处在中间位置的一个数是10,因此中位数是10, 这五部电影得票数出现次数最多的是11,共出现2次,因此众数是11, 故选:A. 【点睛】 此题考查了中位数和众数的求解,掌握它们的求解方法是解题的关键. 5.D 解析:D 【分析】 分别取的中点为,连接,利用中点四边形的性质可以推出,再根据,可以推导出四边形是正方形即可求解. 【详解】 解:分别取的中点为,连接, 分别是的中点, , 又, , 四边形是正方形, , 故选:D. 【点睛】 本题考查了中点四边形的性质、正方形的判定及性质,解题的关键是作出适当的辅助线,利用题意证明出四边形是正方形. 6.B 解析:B 【解析】 【分析】 在△ABC中利用三角形内角和定理可求出∠C的度数,由折叠的性质,可知:∠CDE=∠C′DE,∠CED=∠C′ED,结合∠2的度数可求出∠CED的度数,在△CDE中利用三角形内角和定理可求出∠CDE的度数,再由∠1=180°﹣∠CDE﹣∠C′DE即可求出结论. 【详解】 解:在△ABC中,∠A=60°,∠B=70°, ∴∠C=180°﹣∠A﹣∠B=50°. 由折叠,可知:∠CDE=∠C′DE,∠CED=∠C′ED, ∴∠CED==99°, ∴∠CDE=180°﹣∠CED﹣∠C=31°, ∴∠1=180°﹣∠CDE﹣∠C′DE=180°﹣2∠CDE=118°. 故选:B. 【点睛】 本题考查了三角形内角和定理以及折叠的性质,利用三角形内角和定理及折叠的性质求出∠CDE的度数是解题的关键. 7.A 解析:A 【解析】 【分析】 根据三角形中位线定理分别求出DE、DF,根据线段中点的定义分别求出AF、AE,计算即可. 【详解】 解:∵D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8, ∴DE=AB=5,DF=AC=4,AF=AB=5,AE=AC=4, ∴四边形AFDE的周长=AF+DF+DE+AE=5+5+4+4=18, 故选:A. 【点睛】 本题考查是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键. 8.B 解析:B 【分析】 由图2知,菱形的边长为a,对角线AC=,则对角线BD为22,当点P在线段AC上运动时,yAPBDx,即可求解. 【详解】 解:由图2知,菱形的边长为a,对角线AC, 则对角线BD为22, 当点P在线段AC上运动时, yAPBDx, 由图2知,当x时,y=a, 即a, 解得:a, 故选:B. 【点睛】 本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解. 二、填空题 9.x≥﹣3 【解析】 【分析】 根据二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可. 【详解】 解:根据题意得:x+3≥0,解得:x≥﹣3. 故答案为:x≥﹣3. 【点睛】 本题考查了函数自变量的确定,熟练掌握二次根式有意义的条件是解题的关键. 10.A 解析:96 【解析】 【分析】 由菱形的周长为40,对角线,可求得另一对角线的长,这个菱形的面积即可求解. 【详解】 解:∵菱形ABCD的周长为40, ∴菱形的边长BC=10, ∵BD=12, ∴OB=BD=6, ∴OC=, ∴BD=2OB=16, ∴S菱形ABCD=AC•BD=. 故答案为:96. 【点睛】 本题考查了菱形的性质、菱形面积的计算方法、勾股定理的应用,熟练掌握菱形的面积等于两条对角线长乘积的一半是解决问题的关键. 11.2 【解析】 【分析】 根据勾股定理计算,得到答案. 【详解】 解:斜边长==2, 故答案为2. 【点睛】 本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. 12.B 解析: 【分析】 根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高. 【详解】 解:如图,连接AP, ∵在△ABC中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2, 即∠BAC=90°. 设Rt△ABC的斜边BC上的高为h. ∴h=, 又∵PE⊥AB于E,PF⊥AC于F, ∴四边形AEPF是矩形, ∴EF=AP. ∵M是EF的中点, ∴AM=EF=AP. 因为AP的最小值即为直角三角形ABC斜边上的高,即等于, ∴AM的最小值是×=. 故答案为:. 【点睛】 本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段. 13. 【分析】 由平移的性质可设平移后的解析式为:,再利用待定系数法求解即可得到答案. 【详解】 解:设平移后的解析式为:, 把代入得: 所以平移后的解析式为: 故答案为: 【点睛】 本题考查的是一次函数的图像的平移,及利用待定系数法求解函数解析式,掌握一次函数的平移的特点是解题的关键. 14.A 解析:5 【解析】 ∵阴影部分的面积总和为6 cm 2,∴矩形面积为12 cm 2; ∴AB×AD=12,∴AB=12÷4=3cm. 15.【分析】 通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,……,通过探究规律,利用规律解决问题即可. 【详解】 解:由题意,,, , 第一个正方形的边长为2, , ,, , 第二个正方 解析: 【分析】 通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,……,通过探究规律,利用规律解决问题即可. 【详解】 解:由题意,,, , 第一个正方形的边长为2, , ,, , 第二个正方形的边长为6, , ,,即:, , , 第三个正方形的边长为18, ,,即:, , , 可得,,,, 第2020个正方形的边长为. 故答案为: . 【点睛】 本题考查一次函数图像上的点的特征,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 16.【分析】 先根据直线 与x轴交于点,可得 (3,0),O=3,再过作A⊥O于A,根据等边三角形的性质以及含30°角的直角三角形的性质,求得的横坐标为,过作于,求得的横坐标为,过作于,求得的横坐标为 解析: 【分析】 先根据直线 与x轴交于点,可得 (3,0),O=3,再过作A⊥O于A,根据等边三角形的性质以及含30°角的直角三角形的性质,求得的横坐标为,过作于,求得的横坐标为,过作于,求得的横坐标为,同理可得 的横坐标为,由此可得,的横坐标为,进而求得点的横坐标是. 【详解】 解:由直线与轴交于点, 可得, ∴, 如图所示,过作于, 则, 即的横坐标为, 由题意可得,, ∴, ∴, 过作于, 则, 即的横坐标为, 过作于,同理可得 横坐标为, 同理可得,的横坐标为, 由此可得,的横坐标为, 点的横坐标是, 故答案为. 【点睛】 本题考查了一次函数图象上点的坐标特征以及等边三角形性质应用,解题的关键是根据性质找出规律,求得坐标. 三、解答题 17.(1);(2);(3)0;(4)或 【分析】 (1)根据二次根式的乘除计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然 解析:(1);(2);(3)0;(4)或 【分析】 (1)根据二次根式的乘除计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可; (4)根据求平方根的方法解方程即可. 【详解】 (1) ; (2) ; (3) ; (4)∵, ∴或, 解得或. 【点睛】 本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的加减计算,求平方根法解方程,熟知相关计算法则是解题的关键. 18.B、C两点之间的距离为海里 【分析】 根据题意可知,然后根据勾股定理计算即可. 【详解】 解:根据题意可知, 1小时后,海里,海里, 在中, 海里, ∴B、C两点之间的距离为海里. 【点睛】 本题考 解析:B、C两点之间的距离为海里 【分析】 根据题意可知,然后根据勾股定理计算即可. 【详解】 解:根据题意可知, 1小时后,海里,海里, 在中, 海里, ∴B、C两点之间的距离为海里. 【点睛】 本题考查了方向角以及勾股定理,读懂题意,得出是关键. 19.(1)见解析;(2)见解析;(3) 【解析】 【分析】 (1)根据正方形的判定画出以AB为边的正方形ABCD即可; (2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可; (3) 解析:(1)见解析;(2)见解析;(3) 【解析】 【分析】 (1)根据正方形的判定画出以AB为边的正方形ABCD即可; (2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可; (3)由勾股定理求出CG即可. 【详解】 解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD; (2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为; (3)如图,CG==. 【点睛】 本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形. 20.(1)见解析;(2)90° 【分析】 (1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可; (2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数. 【详解】 解析:(1)见解析;(2)90° 【分析】 (1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可; (2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数. 【详解】 解:(1)证明:∵,, ∴,, ∵, ∴, ∴, ∴, ∴四边形是平行四边形. 又∵, ∴四边形是菱形; (2)∵四边形是菱形, ∴. ∵,, ∴. ∵, ∴, ∵, ∴. 即. 【点睛】 本题考查菱形的判定与性质,熟练掌握全等三角形的判定和性质以及菱形的判定与性质是解题的关键. 21.(1) ,1;(2) 9;(3) 5 【解析】 【分析】 (1); (2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求 解析:(1) ,1;(2) 9;(3) 5 【解析】 【分析】 (1); (2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简,然后把所求的式子化成代入求解即可. 【详解】 (1)计算: ; (2)原式; (3), 则原式, 当时,原式. 【点睛】 本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键. 22.(1)2;(2)y=2x+30;(3)10 【分析】 (1)比较第一、二两个量桶可知,放入三个球,水面上升6cm,由此可求放入一个小球量桶中水面升高的高度; (2)根据(1)的结论可知,放入小球x( 解析:(1)2;(2)y=2x+30;(3)10 【分析】 (1)比较第一、二两个量桶可知,放入三个球,水面上升6cm,由此可求放入一个小球量桶中水面升高的高度; (2)根据(1)的结论可知,放入小球x(个)后,量桶中水面的高度,即可得到y与x的一次函数关系式; (3)根据(2)可以得出y>49,再进行求解即可得出答案. 【详解】 解:(1)36-30=6(cm), 6÷3=2(cm) 故答案为:2; (2)设y=kx+b,把(0,30),(3,36), 代入得:, 解得, 即y=2x+30; (3)由2x+30>49, 得x>9.5, 即至少放入10个小球时有水溢出. 【点睛】 本题主要考查一次函数实际应用问题,综合考查同学们识图能力、处理信息能力、待定系数法以及函数所反映的对应与变化思想的应用. 23.(1) (2) (3)2或或4 【分析】 (1)由勾股定理可求出答案; (2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程 解析:(1) (2) (3)2或或4 【分析】 (1)由勾股定理可求出答案; (2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案; (3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案. 【详解】 解:(1)当t=1时,AE=1, ∵四边形AEFG是正方形, ∴AG=FG=AE=1,∠G=90°, ∴BF===, (2)如图1,延长AF,过点D作射线AF的垂线,垂足为H, ∵四边形AGFE是正方形, ∴AE=EF,∠AEF=90°, ∴∠EAF=45°, ∵DH⊥AH, ∴∠AHD=90°,∠ADH=45°=∠EAF, ∴AH=DH, 设AH=DH=x, ∵在Rt△AHD中,∠AHD=90°, ∴x2+x2=42, 解得x1=﹣2(舍去),x2=2, ∴D、F两点之间的最小距离为2; (3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2, ∵AH=DH,HK⊥AD, ∴AK==2, ∴t=2. 当AF=AD=4时,设AE=EF=x, ∵在Rt△AEF中,∠AEF=90°, ∴x2+x2=42, 解得x1=﹣2(舍去),x2=2, ∴AE=2, 即t=2. 当AD=DF=4时,点E与D重合,t=4, 综上所述,t为2或2或4. 【点睛】 本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题. 24.(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,). 【解析】 【分析】 (1)根据题意,点B、C关于点M对称,即可求出点C的坐标; (2)由折叠的性质,得AB=CB, 解析:(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,). 【解析】 【分析】 (1)根据题意,点B、C关于点M对称,即可求出点C的坐标; (2)由折叠的性质,得AB=CB,BD=AD,根据勾股定理先求出AM的长度,设点D为(1,a),利用勾股定理构造方程,即可求出点D坐标,然后利用待定系数法求直线BD. (3)分两种情形:如图2中,当点P在第一象限时,连接BQ,PA.证明点P在AC的垂直平分线上,构建方程组求出交点坐标即可.如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,可得∠CAQ=∠CBP=30°,构建方程组解决问题即可. 【详解】 解:(1)根据题意, ∵点B、C关于点M对称,且点B、M、C都在x轴上, 又点B(),点M(1,0), ∴点C为(3,0); (2)如图: 由折叠的性质,得:AB=CB=4,AD=CD=BD, ∵BM=2,∠AMB=90°, ∴, ∴点A的坐标为:(1,); 设点D为(1,a),则DM=a,BD=AD=, 在Rt△BDM中,由勾股定理,得 , 解得:, ∴点D的坐标为:(1,); 设直线BD为,则 ,解得:, ∴直线BD为:; (3)如图2中,当点P在第一象限时,连接BQ,PA. ∵△ABC,△CPQ都是等边三角形, ∴∠ACB=∠PCQ=60°, ∴∠ACP=∠BCQ, ∵CA=CB,CP=CQ, ∴△ACP≌△BCQ(SAS), ∴AP=BQ, ∵AD垂直平分线段BC, ∴QC=QB, ∴PA=PC, ∴点P在AC的垂直平分线上, 由,解得, ∴P(,). 如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP, ∴∠CAQ=∠CBP=30°, ∵B(-1,0), ∴直线PB的解析式为, 由,解得:, ∴P(,). 【点睛】 本题属于一次函数综合题,考查了一次函数的性质,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题. 25.(I) ;(II) 16或10;(III) . 【解析】 【分析】 (I)根据已知条件直接写出答案即可. (II)分两种情况: 或讨论即可. (III)根据已知条件直接写出答案即可. 【详解】 (I 解析:(I) ;(II) 16或10;(III) . 【解析】 【分析】 (I)根据已知条件直接写出答案即可. (II)分两种情况: 或讨论即可. (III)根据已知条件直接写出答案即可. 【详解】 (I) ; (II)∵四边形是矩形,∴,. 分两种情况讨论: (i)如图1, 当时,即是以为腰的等腰三角形. (ii)如图2,当时,过点作∥,分别交与于点、. ∵四边形是矩形, ∴∥,. 又∥, ∴四边形是平行四边形,又, ∴□是矩形,∴,,即, 又, ∴,, ∵,∴, ∴, 在中,由勾股定理得:, ∴, 在中,由勾股定理得:, 综上,的长为16或10. (III) . (或). 【点睛】 本题主要考查了四边形的动点问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 期末试卷 培优篇 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文