数学八年级下册数学期末试卷复习练习(Word版含答案).doc
《数学八年级下册数学期末试卷复习练习(Word版含答案).doc》由会员分享,可在线阅读,更多相关《数学八年级下册数学期末试卷复习练习(Word版含答案).doc(26页珍藏版)》请在咨信网上搜索。
数学八年级下册数学期末试卷复习练习(Word版含答案) 一、选择题 1.若二次根式有意义,则x的值不可能是( ) A.3 B.﹣5 C.﹣4 D.0 2.下列各组数据中,能构成直角三角形的三边的长的一组是( ) A.1,2,3 B.4,5,6 C.5,12,13 D.13,14,15 3.下列条件中,不能判断四边形是平行四边形的是( ) A. B. C. D. 4.在某次数学测验中,某小组8名同学的成绩如下:81,73,81,81,85,83,87,89,则这组数据的中位数、众数分别为( ). A.80,81 B.81,89 C.82,81 D.73,81 5.如图,在四边形ABCD中,AC=16,BD=12,且AC⊥BD,连接四边形ABCD各边中点得到四边形EFGH,下列说法错误的是( ) A.四边形EFGH是矩形 B.四边形ABCD的面积是92 C.四边形EFGH的面积是48 D.四边形EFGH的周长是28 6.如图所示,在菱形ABCD中,AC,BD相交于O,∠ABC=50°,E是线段AO上一点则∠BEC的度数可能是( ) A.95° B.75° C.55° D.35° 7.如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为( ) A.6cm2 B.8cm2 C.10cm2 D.12cm2 8.正方形,,,…,按如图所示的方式放置,点,…和点,…分别在直线和轴上.则点的纵坐标是( ) A. B. C. D. 二、填空题 9.若代数式有意义,则实数的取值范围是_________. 10.已知菱形的周长等于8,一条对角线长为2,则此菱形的面积为___. 11.若一直角三角形的两直角边长为,1,则斜边长为_____. 12.如图,过矩形对角线的交点,且分别交、于、,,,点是的中点,那么阴影部分的面积是______. 13.若直线y=kx+b(k≠0)经过点A(0,3),且与直线y=mx﹣m(m≠0)始终交于同一点(1,0),则k的值为________. 14.如图中,四边形 ABCD是对角线互相垂直的四边形,且 OB=OD,若使四边形 ABCD为菱形,则需添加的条件是______.(只需添加一个条件即可) 15.如图,将一块等腰直角三角板放置在平面直角坐标系中,,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,所在直线的函数表达式是,若保持的长不变,当点A在y轴的正半轴滑动,点C随之在x轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是_______. 16.如图,矩形ABCD中,AB=8,AD=5,点E为DC边上一个动点,把△ADE沿AE折叠,点D的对应点D’落在矩形ABCD的对称轴上时,DE的长为____________. 三、解答题 17.计算 (1) (2) (3) (4) 18.如图,将长为2.5米的梯子AB斜靠在墙AO上,BO长0.7米.如果将梯子的顶端A沿墙下滑0.4米,即AM等于0.4米,则梯脚B外移(即BN长)多少米? 19.如图,方格纸中每个小正方形的边长均为1,线段和线段的端点均在小正方形的顶点上. (1)在方格纸中画以为一边的正方形,点和点均在小正方形的顶点上; (2)在方格纸中画以为一边的菱形,点和点均在小正方形的顶点上,菱形的面积为20,连接,并直接写出线段的长. 20.如图,点D为的边BC的中点,过点A作,且,连接DE,CE. (1)求证:; (2)若,判断四边形ADCE的形状,并说明理由; (3)若要使四边形ADCE为正方形,则应满足什么条件? (直接写出条件即可,不必证明). 21.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的: 因为a===2-, 所以a-2=-. 所以(a-2)2=3,即a2-4a+4=3. 所以a2-4a=-1. 所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算: = - . (2)计算:+…+; (3)若a=,求4a2-8a+1的值. 22.甲、乙两个探测气球分别从海拔高度5m和15m处同时出发,甲探测气球以1m/min的速度上升,乙探测气球以0.5m/min的速度上升,两个气球都上升了60min.下图是甲、乙两个探测气球所在位置的海拔高度(单位:m)与气球上升时间(单位:min)的函数图象. (1)分别写出表示两个气球所在位置的海拔高度(单位:m)关于上升时间(单位:min)的函数关系. (2)当甲、乙两气球的海拔高度相差15米时,上升时间是多少? 23.如图,正方形ABCD的顶点C处有一等腰直角三角形CEP,∠PEC=90°,连接AP,BE. (1)若点E在BC上时,如图1,线段AP和BE之间的数量关系是 ; (2)若将图1中的△CEP顺时针旋转使P点落在CD上,如图2,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在(2)的基础上延长AP,BE交于F点,若DP=PC=2,求BF的长. 24.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线x轴于点C,且AB=BC. (1)求直线BC的表达式 (2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于点P,设点Q的横坐标为m,求的面积(用含m的代数式表示) (3)在(2)的条件下,点M在y轴的负半轴上,且MP=MQ,若求点P的坐标. 25.如图,四边形为正方形.在边上取一点,连接,使. (1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则; (2)在前面的条件下,取中点,过点的直线分别交边、于点、. ①当时,求证:; ②当时,延长,交于点,猜想与的数量关系,并说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式有意义的条件求出x的范围,进而得出答案. 【详解】 解:根据二次根式有意义的条件得:x+4≥0, ∴x≥﹣4, 故选:B. 【点睛】 本题考查了二次根式有意义的条件,能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围是解题的关键. 2.C 解析:C 【分析】 先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题. 【详解】 解:A.,不是直角三角形,故A不符合题意; B. ,不是直角三角形,故B不符合题意; C. ,是直角三角形,故C不符合题意; D. ,不是直角三角形,故D不符合题意, 故选:C. 【点睛】 本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键. 3.C 解析:C 【解析】 【分析】 根据平行四边形的判断方法一一判断即可解决问题. 【详解】 解:A、∵∠A=∠C,∠B=∠D, ∴四边形ABCD是平行四边形,正确,故本选项错误; B、∵AB∥CD,AB=CD, ∴四边形ABCD是平行四边形,正确,故本选项错误; C、根据AB=CD,AD∥BC可能得出四边形是等腰梯形,不一定推出四边形ABCD是平行四边形,错误,故本选项正确; D、∵AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形,正确,故本选项错误; 故选:C. 【点睛】 本题考查了平行四边形的判定的应用,注意:平行四边形的判定定理有:①有两组对角分别相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有一组对边相等且平行的四边形是平行四边形,④对角线互相平分的四边形是平行四边形,⑤有两组对边分别平行的四边形是平行四边形. 4.C 解析:C 【解析】 【详解】 试题解析:将这组数从小到大排列为73,81,81,81,83,85,87,89,观察数据可知,最中间的那两个数为81和83,则中位数为82,而81出现的次数最多,所以众数是81.故本题应选C. 5.B 解析:B 【分析】 利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形可判断选项A是否正确;由AC=8,BD=6,且AC⊥BD,可求出四边形EFGH和ABCD的面积,由此可判断选项CD是否正确;题目给出的数据求出四边形EFGH的周长,所以选项B不符合题意. 【详解】 解:∵点E、F、G、H分别是边AB、BC、CD、DA的中点, ∴EF=AC,GH=AC, ∴EF=GH,同理EH=FG ∴四边形EFGH是平行四边形; 又∵对角线AC、BD互相垂直, ∴EF与FG垂直. ∴四边形EFGH是矩形,故选项A正确,不符合题意; ∵AC=16,BD=12,且AC⊥BD, ∴四边形ABCD的面积=AC•BD=96,故选项B错误,符合题意; ∵四边形EFGH是矩形,且HG=AC=8,HE=BD=6, ∴四边形EFGH的面积6×8=48,故选项C正确,不符合题意; ∵EF=AC=8,HE=BD=6, ∴四边形EFGH的周长=2(6+8)=28,所以选项D正确,不符合题意, 故选:B. 【点睛】 本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,平行四边形的判断及矩形的判断进行证明,是一道综合题. 6.B 解析:B 【解析】 【分析】 由菱形的性质,得∠AOB=90°,∠ABO=,从而得:∠BAO=65°,进而可得:65°<<90°,即可得到答案. 【详解】 解:∵在菱形中, ∴,即:∠AOB=90°, ∴<90°, ∵, ∴∠ABO=, ∴∠BAO=65°, ∵=∠BAO+∠ABE, ∴>55°, 即:55°<<90°. 故选B. 【点睛】 本题主要考查菱形的性质定理以及三角形内角和定理与外角的性质,掌握菱形的性质是解题的关键. 7.A 解析:A 【解析】 【分析】 根据折叠的条件可得:,在中,利用勾股定理就可以求解. 【详解】 将此长方形折叠,使点与点重合,, , 根据勾股定理得:, 解得:. . 故选:A. 【点睛】 本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键. 8.B 解析:B 【分析】 先根据一次函数图象上点的坐标特征及正方形的性质确定点A1,A 2,A3,A4,A5进而确定C1,C 2,C3,C4,C5的坐标并总结出点Cn的纵坐标的规律为2n-1(n为正整数),将n=2030代入即可解答. 【详解】 解:由题意可知,A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8, A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同, ∴C1,C2,C3,C4,,C5,…Cn的纵坐标分别为1,2,4,8,16,…2n-1 ∴的纵坐标为22020-1=22019. 故答案为B. 【点睛】 本题考查了一次函数图像上点的坐标特征、正方形的性质以及找规律,找出Cn点纵坐标的规律为2n-1(n为正整数)是解答本题的关键. 二、填空题 9.且 【解析】 【分析】 根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案. 【详解】 解:由题意得,x+2≥0,x≠0, 解得,x≥-2且x≠0, 故答案为:x≥-2且x≠0. 【点睛】 本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键. 10.A 解析:cm2. 【解析】 【分析】 根据周长先求出边长,由菱形的对角线平分且垂直求出它的另一条对角线的长,再根据面积公式求得面积. 【详解】 解:如图: ∵菱形ABCD的周长等于8cm, ∴AB=8÷4=2cm,AC⊥BD,AO=CO,BO=DO, ∵AC=2, ∴AO=1, ∴BO=, ∴菱形的面积为2×2÷2=2cm2. 故答案为:cm2. 【点睛】 本题考查了菱形的四条边相等的性质,以及对角线互相垂直平分的性质,还考查了菱形面积的计算,对角线乘积的一半. 11.2 【解析】 【分析】 根据勾股定理计算,得到答案. 【详解】 解:斜边长==2, 故答案为2. 【点睛】 本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. 12.A 解析:18 【分析】 据矩形的性质可得,利用ASA可证明,可得阴影部分的面积,根据等底等高的两个三角形面积相等可得,即可得出,即可得答案. 【详解】 解:∵四边形ABCD为矩形, ∴,AB//CD, ∴∠EBO=∠FDO, 在与中, , ∴, ∴, ∵M是AD的中点, ∴, 又∵O是BD的中点, ∴, ∴ ∴阴影部分的面积, ∵与等底等高, ∴, ∵, ∴. ∴阴影部分的面积, 故答案为:18. 【点睛】 本题考查了矩形的性质及全等三角形的判定与性质,熟练掌握矩形当性质并熟练掌握是解题关键. 13.A 解析:-3 【分析】 根据题意直线y=kx+b(k≠0)经过点A(0,3)和点(1,0),然后根据待定系数法即可求得k的值. 【详解】 解:∵直线y=kx+b(k≠0)经过点A(0,3)和点(1,0), ∴, 解得k=﹣3, 故答案为:-3. 【点睛】 本题考查了待定系数法求一次函数的解析式,熟练运用待定系数法是解题的关键. 14.A 解析: 【分析】 根据菱形的判定即可得出答案. 【详解】 ∵四边形ABCD是对角线互相垂直的四边形,且OB=OD,, ∴四边形ABCD是菱形, 故答案为:. 【点睛】 本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键. 15.【分析】 根据自变量与函数值得对应关系,可得A,C点坐标,根据勾股定理,可得AC的长度;根据全等三角形的判定与性质,可得CD,BD的长,可得B点坐标;首先取AC的中点E,连接BE,OE,OB,可求 解析: 【分析】 根据自变量与函数值得对应关系,可得A,C点坐标,根据勾股定理,可得AC的长度;根据全等三角形的判定与性质,可得CD,BD的长,可得B点坐标;首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离. 【详解】 解:当x=0时,y=2x+2=2, ∴A(0,2); 当y=2x+2=0时,x=-1, ∴C(-1,0). ∴OA=2,OC=1, ∴AC==, 如图所示,过点B作BD⊥x轴于点D. ∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°, ∴∠CAO=∠BCD. 在△AOC和△CDB中, , ∴△AOC≌△CDB(AAS), ∴CD=AO=2,DB=OC=1, OD=OC+CD=3, ∴点B的坐标为(-3,1). 如图所示.取AC的中点E,连接BE,OE,OB, ∵∠AOC=90°,AC=, ∴OE=CE=AC=, ∵BC⊥AC,BC=, ∴BE==, 若点O,E,B不在一条直线上,则OB<OE+BE=, 若点O,E,B在一条直线上,则OB=OE+BE=, ∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为, 故答案为:. 【点睛】 此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC长度的关键,又利用了勾股定理;求点B的坐标的关键是利用全等三角形的判定与性质得出CD,BD的长;求点B与原点O的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 16.或 【详解】 分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理 解析:或 【详解】 分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论. 详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示. 设DE=a,则D′E=a. ∵矩形ABCD有两条对称轴, ∴分两种情况考虑: ①当DM=CM时, AN=DM=CD=AB=4,AD=AD′=5, 由勾股定理可知: ND′=, ∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a, ∵ED′2=EM2+MD′2,即a2=(4-a)2+4, 解得:a=; ②当MD′=ND′时, MD′=ND′=MN=AD=, 由勾股定理可知: AN=, ∴EM=DM-DE=AN-DE=-a, ∵ED′2=EM2+MD′2,即a2=(−a)2+()2, 解得:a=. 综上知:DE=或. 故答案为或.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键. 三、解答题 17.(1)1;(2);(3)0;(4). 【分析】 (1)先运用分母有理化化简,然后再计算即可; (2)先运用二次根式的性质化简,然后再计算即可; (3)先运用平方差公式计算,然后再化简即可; (4)先 解析:(1)1;(2);(3)0;(4). 【分析】 (1)先运用分母有理化化简,然后再计算即可; (2)先运用二次根式的性质化简,然后再计算即可; (3)先运用平方差公式计算,然后再化简即可; (4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可. 【详解】 解:(1) = = =4-3 =1; (2) = =; (3) =5-7+2 =0; (4) = = =. 【点睛】 本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键. 18.梯脚外移0.8米. 【分析】 直角利用勾股定理求出AO,ON的长,再利用NB=ON-OB,即可求出答案. 【详解】 解:由题意得:AB=2.5米,BO=0.7米, 在Rt△ABO中,由勾股定理得: 解析:梯脚外移0.8米. 【分析】 直角利用勾股定理求出AO,ON的长,再利用NB=ON-OB,即可求出答案. 【详解】 解:由题意得:AB=2.5米,BO=0.7米, 在Rt△ABO中,由勾股定理得: (米). ∴MO=AO-AM=2.4-0.4=2(米), 在Rt△MNO中,由勾股定理得: (米). ∴NB=ON-OB=1.5-0.7=0.8(米), ∴梯脚B外移(即BN长)0.8米. 【点睛】 本题主要考查了勾股定理的应用,读懂题意,正确应用勾股定理是解题的关键. 19.(1)见解析;(2)见解析, 【解析】 【分析】 (1)根据正方形的定义画出图形即可; (2)画出底为,高为的菱形即可,利用勾股定理求出. 【详解】 解:(1)如图,正方形即为所求; (2)如图,菱 解析:(1)见解析;(2)见解析, 【解析】 【分析】 (1)根据正方形的定义画出图形即可; (2)画出底为,高为的菱形即可,利用勾股定理求出. 【详解】 解:(1)如图,正方形即为所求; (2)如图,菱形即为所求,. 【点睛】 本题考查作图-应用与设计作图,勾股定理,菱形的性质,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 20.(1)见解析;(2)矩形,见解析;(3),且. 【分析】 (1)根据D是BC的中点,,可得,即可求证; (2)根据等腰三角形“三线合一”,可得到,即可求解; (3)根据,且,可得 , ,从而得到,即 解析:(1)见解析;(2)矩形,见解析;(3),且. 【分析】 (1)根据D是BC的中点,,可得,即可求证; (2)根据等腰三角形“三线合一”,可得到,即可求解; (3)根据,且,可得 , ,从而得到,即可求解. 【详解】 (1)证明:因为D是BC的中点, 所以, 因为, 所以, 因为, 所以四边形ADCE是平行四边形, 所以; (2)若,则四边形ADCE是矩形,理由如下: 因为,且D是BC的中点, 所以, 所以, 因为四边形是平行四边形, 所以四边形是矩形; (3),且.理由如下: 由(2)得:四边形是矩形, ∵,且D是BC的中点, ∴ , , ∵, ∴ , ∴, ∴, ∴ , ∴四边形ADCE为正方形. 【点睛】 本题主要考查了平行四边形,矩形,正方形的判定,等腰三角形的性质,熟练掌握相关知识点是解题的关键. 21.(1) ,1;(2) 9;(3) 5 【解析】 【分析】 (1); (2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求 解析:(1) ,1;(2) 9;(3) 5 【解析】 【分析】 (1); (2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简,然后把所求的式子化成代入求解即可. 【详解】 (1)计算: ; (2)原式; (3), 则原式, 当时,原式. 【点睛】 本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键. 22.(1),;(2)当甲、乙两气球的海拔高度相差15米时,上升时间是50min. 【分析】 (1)分别设甲,乙气球在上升过程中的函数解析式,将(0,5),(20,25)和(0,15),(20,25)分别 解析:(1),;(2)当甲、乙两气球的海拔高度相差15米时,上升时间是50min. 【分析】 (1)分别设甲,乙气球在上升过程中的函数解析式,将(0,5),(20,25)和(0,15),(20,25)分别代入其解析式中,即可得; (2)根据初始位置及题图可知,当大于20时,甲、乙两气球的海拔高度相差15米,列式即可得. 【详解】 解:(1)设甲气球在上升过程中的函数解析式为:,将(0,5)和(20,25)代入得, , 解得:, ∴甲气球在上升过程中的函数解析式为:, 设乙气球在上升过程中的函数解析式为:,将(0,15)和(20,25)代入得, , 解得:, ∴乙气球在上升过程中的函数解析式为:, ∴综上:,; (2)由初始位置及题图可知, 当大于20时,甲、乙两气球的海拔高度相差15米时, ∴, 解得, ∴当甲、乙两气球的海拔高度相差15米时,上升时间是50min. 【点睛】 本题考查了一次函数的应用,解题的关键是设出解析式并根据题中变量之间的对应关系进行解答. 23.(1)AP=BE;(2)成立,理由见解析;(3) 【分析】 (1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断; ( 解析:(1)AP=BE;(2)成立,理由见解析;(3) 【分析】 (1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断; (2)过点B作BH⊥BE,且BH=BE,连接AH,EH,证明△ABH≌△BEC,得到AH=EC=PE,∠AHB=∠CEB,从而证明四边形AHEP是平行四边形,同理可得AP=EH=BE; (3)过B,D分别作AF的垂线,垂足为K,M,证明△ABK≌△DAM,得到BK=AM,求出AP,在△ADP中利用面积法求出DM,可得AM和BK,再利用勾股定理求出BF即可. 【详解】 解:(1)∵点E在BC上,△PEC为等腰直角三角形, ∴PE=CE,∠PCE=45°, ∵四边形ABCD是正方形, ∴∠ACB=45°, ∴A,P,C三点共线,设正方形ABCD的边长为1,CE=x, ∴PE=x,PC=x,AC=, ∴AP=AC-PC=,BE=BC-CE=1-x, ∴AP=BE; (2)成立, 如图,过点B作BH⊥BE,且BH=BE,连接AH,EH, ∵∠ABC=∠EBH=90°, ∴∠CBE+∠ABE=∠ABH+∠ABE=90°, ∴∠CBE=∠ABH, 又∵BH=BE,AB=BC, ∴△ABH≌△BEC(SAS), ∴AH=EC=PE,∠AHB=∠CEB, ∴∠AHE=∠AHB-∠EHB=∠CEB-45°, ∵∠HEP=360°-∠CEB-∠HEB-∠CEP =360°-∠CEB-45°-90° =225°-∠CEB, ∴∠AHE+∠HEP=∠CEB-45°+225°-∠CEB=180°, ∴AH∥PE, ∴四边形AHEP是平行四边形, ∴AP=EH=BE; (3)如图,过B,D分别作AF的垂线,垂足为K,M, ∵∠BAD=∠BAK+∠DAM=90°,∠ABK+∠BAK=90°, ∴∠ABK=∠DAM, 又∵AB=AD,∠AKB=∠AMD=90°, ∴△ABK≌△DAM(AAS), ∴BK=AM, ∵四边形ABCD是正方形,DP=PC=2, ∴AD=CD=4,∠AHE=90°, ∴AP=, ∴S△ADP=, ∴, ∴, ∴AM=, 由(2)可知:△EBH为等腰直角三角形,HE∥AP, ∴∠KBF=∠HBE=45°, ∴∠F=45°, ∴BF==. 【点睛】 本题考查了正方形的性质,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4) 【解析】 【分析】 (1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式; (2)过点P作PG 解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4) 【解析】 【分析】 (1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式; (2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解; (3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标. 【详解】 解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B, ∴点B(0,8),点A(-4,0) ∴AO=4,BO=8, ∵AB=BC,BO⊥AC, ∴AO=CO=4, ∴点C(4,0), 设直线BC解析式为:y=kx+b, 由题意可得:, 解得:, ∴直线BC解析式为:y=-2x+8; (2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC, 设△PBQ的面积为S, ∵AB=CB, ∴∠BAC=∠BCA, ∵点Q横坐标为m, ∴点Q(m,-2m+8) ∴HQ=2m-8,CH=m-4, ∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°, ∴△AGP≌△CHQ(AAS), ∴AG=HC=m-4,PG=HQ=2m-8, ∵PE∥BC, ∴∠PEA=∠ACB,∠EPF=∠CQF, ∴∠PEA=∠PAE, ∴AP=PE,且AP=CQ, ∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ, ∴△PEF≌△QCF(AAS) ∴S△PEF=S△QCF, ∴△PBQ的面积 =四边形BCFP的面积+△CFQ的面积 =四边形BCFP的面积+△PEF的面积 =四边形PECB的面积, ∴S=S△ABC-S△PAE=×8×8-×(2m-8)×(2m-8)=16m-2m2; (3)如图2,连接AM,CM,过点P作PE⊥AC, ∵AB=BC,BO⊥AC, ∴BO是AC的垂直平分线, ∴AM=CM,且AP=CQ,PM=MQ, ∴△APM≌△CQM(SSS) ∴∠PAM=∠MCQ,∠BQM=∠APM=45°, ∵AM=CM,AB=BC,BM=BM, ∴△ABM≌△CBM(SSS) ∴∠BAM=∠BCM, ∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°, ∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°, ∴∠APM=∠AMP=45°, ∴AP=AM, ∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°, ∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP, ∴△APE≌△MAO(AAS) ∴AE=OM,PE=AO=4, ∴2m-8=4, ∴m=6, ∴P(-2,4). 【点睛】 本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键. 25.(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中, 解析:(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答; (3)NQ=2MQ或NQ=MQ,分两种情况讨论,作辅助线,证明,即可解答. 【详解】 (1)如图1,分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点; 图1 (2)①连接,如图2, 图2 点是的中点, 垂直平分. , , , , , , . ②数量关系为:或. 理由如下,分两种情况: I、如图3所示,过点作于点交于点,则. 图3 正方形中,, . 在和中, . . 又, , .. . Ⅱ、如图4所示,过点作于点交于点,则. 图4 同理可证. 此时. 又,. . ,. 【点睛】 本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期末试卷 复习 练习 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文