数学初二上册期末强化综合试题带解析(一).doc
《数学初二上册期末强化综合试题带解析(一).doc》由会员分享,可在线阅读,更多相关《数学初二上册期末强化综合试题带解析(一).doc(22页珍藏版)》请在咨信网上搜索。
数学初二上册期末强化综合试题带解析(一) 一、选择题 1.下列图形既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 2.一种微粒的半径是0.00002米,数0.00002用科学记数法表示为( ) A.2×10﹣5 B.0.2×10﹣4 C.2×10﹣3 D.2×105 3.下列计算正确的是( ) A. B. C. D. 4.若代数式在实数范围内有意义,则的取值范围为( ) A. B. C. D. 5.下列由左到右的变形,属于因式分解的是( ) A. B. C. D. 6.下列式子中正确的是( ) A. B. C. D. 7.如图,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD ;③∠C=∠D;④OA=OB条件中任选一个,可使△ABC≌△BAD.可选的条件个数为( ) A.1 B.2 C.3 D.4 8.关于x的一元一次不等式组的解集为,且关于y的分式方程有正整数解,则符合条件的所有整数m的和为( ) A.6 B.9 C.10 D.13 9.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形A和正方形B并列放置后构造新正方形,测得阴影部分面积为6,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形纸片均无重叠部分)则图3阴影部分面积为( ) A.14 B.12 C.24 D.22 10.如图,在△ABD中,AD=AB,∠DAB=90⁰,在△ACE中,AC=AE,∠EAC=90⁰,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有( ) A.4个 B.3个 C.2个 D.1个 二、填空题 11.要使分式的值为0,则___________. 12.在平面直角坐标系中,点A(4,-3)关于x轴的对称点的坐标是______. 13.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,则的值为 __;以此类推,若.n为正整数,则n的值为 __. 14.若3x﹣2=y,则8x÷2y=_____. 15.如图,在四边形ABCD中,.在BC,CD上分别找一点M,N,使周长最小,则的度数为_________. 16.若 是一个完全平方式,则 的值为________________. 17.一个多边形的内角和为1440°,则这个多边形是 _____边形. 18.如图,已知等边△ABC的边长为8cm,∠A=∠B=60°,点D为边BC上一点,且BD=3cm.若点M在线段CA上以2cm/s的速度由点C向点A运动,同时,点N在线段AB上由点A向点B运动,△CDM与△AMN全等,则点N的运动速度是______ 三、解答题 19.(1)计算:; (2)分解因式:. 20.先化简再求值:,其中. 21.如图,点B,E,C,F在一条直线上,∠B=∠DEF,∠ACB=∠F,BE=CF.求证:∠A=∠D. 22.探索归纳: (1)如图1,已知为直角三角形,,若沿图中虚线剪去,则________. (2)如图2,已知中,,剪去后成四边形,则__________. (3)如图2,根据(1)与(2)的求解过程,请你归纳猜想与的关系是___________. (4)如图3,若没有剪掉,而是把它折成如图3形状,试探究与的关系并说明理由. 23.某超市准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同. (1)求甲种牛奶、乙种牛奶的进价分别是每件多少元? (2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价-进价)不低于371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案? 24.阅读下列材料: 材料1:将一个形如x²+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n则可以把x²+px+q因式分解成(x+m)(x+n),如:(1)x2+4x+3=(x+1)(x+3);(2)x2﹣4x﹣12=(x﹣6)(x+2). 材料2:因式分解:(x+y)2+2(x+y)+1,解:将“x+y看成一个整体,令xy=A,则原式=A²+2A+1=(A+1)²,再将“A”还原得:原式=(x+y+1)² 上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题: (1)根据材料1,把x2+2x﹣24分解因式; (2)结合材料1和材料2,完成下面小题; ①分解因式:(x﹣y)²﹣8(x﹣y)+16; ②分解因式:m(m﹣2)(m²﹣2m﹣2)﹣3 25.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:______________________________________________; 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 26.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 【参考答案】 一、选择题 2.B 解析:B 【分析】根据轴对称图形和中心对称图形的定义,逐项判断即可求解. 【详解】A、是轴对称图形,但不是中心对称图形,故本选项不符合题意; B、既是轴对称图形又是中心对称图形,故本选项符合题意; C、是中心对称图形,但不是轴对称图形,故本选项不符合题意; D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意; 故选:B. 【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键. 3.A 解析:A 【分析】科学记数法的表示形式为a10n的形式,其中1≤<10,n为正整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 【详解】解:数0.00002用科学记数法表示为2×10﹣5. 故选:A. 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10n,其中1≤<10,n为负整数,n的绝对值与小数点移动的位数相同.用科学计数法表示数,一定要注意a的形式,以及指数n的确定方法. 4.A 解析:A 【分析】根据同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法运算法则进行计算即可. 【详解】解:A.,故A符合题意; B.与不能合并,故B不符合题意; C.,故C不符合题意; D.,故D不符合题意; 故选:A. 【点睛】本题考查了同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法,熟练掌握它们的运算法则是解题的关键. 5.A 解析:A 【分析】根据二次根式的被开方数≥0和分式的分母≠0两个条件确定x的范围即可. 【详解】由二次根式的被开方数≥0,得 3x≥0, ∴x≥0. 由分式的分母≠0,得 x-2≠0, ∴x≠2, ∴x≥0 且x≠2. 故选A 【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,二次根式的被开方数≥0时二次根式有意义,分式的分母≠0时分式有意义.掌握以上知识是解题的关键. 6.D 解析:D 【分析】因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做这个多项式的因式分解,据此逐项判断即可. 【详解】解:A、,是完全平方公式,属于整式的乘法,故不符合题意; B、,属于整式的乘法,不是因式分解,故不符合题意; C、,不是整式乘积的形式,即不属于因式分解,故不符合题意; D、,是因式分解,故符合题意; 故选D. 【点睛】本题主要考查因式分解的定义,熟练掌握因式分解的定义是解题的关键. 7.A 解析:A 【分析】根据分式的基本性质即可求出答案. 【详解】解:A.,故选项正确,符合题意; B.,故选项错误,不符合题意; C.,故选项错误,不符合题意; D.,故选项错误,不符合题意. 故选:A. 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 8.D 解析:D 【分析】根据全等三角形的判定定理逐个判断即可. 【详解】解:①.AC=BD,∠CAB=∠DBA,AB=BA,符合全等三角形的判定定理SAS,能推出△ABC≌△BAD; ②.∠CAB=∠DBA,AD=BC,AB=BA,符合直角三角形全等的判定定理HL,能推出Rt△ABC≌Rt△BAD; ③.∠C=∠D,∠CAB=∠DBA,AB=BA,符合全等三角形的判定定理AAS,能推出△ABC≌△BAD; ④.∵OB=OA, ∴∠OAB=∠OBA, 即∠OAB=∠OBA,AB=BA,∠CAB=∠DBA,符合全等三角形的判定定理ASA,能推出△ABC≌△BAD; 即能选的个数是4个, 故选:D. 【点睛】本题考查了等腰三角形的性质和全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL. 9.B 解析:B 【分析】先解不等式组再结合不等式组的解集为,可得再解分式方程在且时可得分式方程的解为再讨论分式方程的解为正整数时,m的值,从而可得答案. 【详解】解: 由①得: 由②得: ∵关于x的一元一次不等式组的解集为, ∴ 解得 ∵, 去分母得: 整理得: 当时, 解得: 经检验: 则 ∴ ∵为正整数,为整数, ∴或,且符合 ∴ 故选B 【点睛】本题考查的是一元一次不等式组的解法,以及根据不等式组的解集求解参数的取值范围,分式方程的解法,以及根据分式方程的解的情况求解参数的值,熟练的解一元一次不等式组与分式方程是解本题的关键. 10.A 解析:A 【分析】由图1可知,阴影部分面积a2-b2=2,图2可知,阴影部分面积(a+b)2-a2-b2=6,进而得到ab=3,由图3可知,阴影部分面积(2a+b)2-3a2-2b2=a2-b2+4ab,即可得出答案. 【详解】解:设正方形A的边长为a,正方形B的边长为b, 由图1可知,阴影部分面积a2-b2=2, 图2可知,阴影部分面积(a+b)2-a2-b2=6, 所以ab=3, 由图3可知,阴影部分面积(2a+b)2-3a2-2b2=a2-b2+4ab=2+12=14. 故选:A. 【点睛】本题考查了平方差公式和完全平方公式的几何背景以及整式的加减,利用公式是解决问题的关键. 11.B 解析:B 【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断. 【详解】∵∠BAD=∠CAE=90°, ∴∠BAD+∠BAC=∠CAE+∠BAC, ∴∠CAD=∠BAE, 又∵AD=AB,AC=AE, ∴△CAD≌△EAB(SAS), ∴DC=BE. 故①正确. ∵△CAD≌△EAB, ∴∠ADC=∠ABE. 设AB与CD的交点为O. ∵∠AOD=∠BOF,∠ADC=∠ABE, ∴∠BFO=∠BAD=90°, ∴CD⊥BE. 故③正确. 过点A作AP⊥BE于P,AQ⊥CD于Q. ∵△CAD≌△EAB,AP⊥BE,AQ⊥CD, ∴AP=AQ, ∴AF平分∠DFE. 故④正确. ②无法通过已知条件和图形得到. 故选B. 【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键. 二、填空题 12.3 【分析】根据分式的值为零的条件:分子等于0且分母不等于0即可得出答案. 【详解】解:根据题意得m-3=0,m+3≠0, ∴m=3, 故答案为:3. 【点睛】本题考查了分式的值为零的条件,掌握分式的值为零的条件:分子等于0且分母不等于0是解题的关键. 13.A 解析:(4,3) 【分析】根据坐标系中,关于x轴对称的点横坐标不变,纵坐标互为相反数的特点解答即可. 【详解】解:A点(4,-3)关于x轴对称的点的坐标是(4,3) 故答案为(4,3) 【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变. 14. 4040 【分析】先根据已知图形归纳出规律,然后代入到方程中,最后再利用所得规律化简即可. 【详解】解:由图形知a1=1×2,a2=2×3,a3=3×4, ∴=+=2×(1﹣+﹣+-)=. ∵ ∴+…+=, ∴2×(1﹣+﹣+-+…+﹣)=, 2×=,解得:n=4040. 故答案为:,4040. 【点睛】本题主要考查图形的变化规律,根据已知图形归纳出规律是解答本题关键. 15. 【分析】由3x﹣2=y可得3x﹣y=2,再根据幂的乘方运算法则以及同底数幂的除法法则计算即可. 【详解】解:因为3x﹣2=y, 所以3x﹣y=2, 所以8x÷2y=23x÷2y=23x﹣y=22=4. 故答案是:4. 【点睛】本题主要考查了幂的乘方运算法则和同底数幂的除法法则,灵活运用相关运算法则成为解答本题的关键. 16.160° 【分析】要使周长最小,即利用点的对称,使三角形的三边在同一直线上,作点A关于BC和CD的对称点,即可得到,进而求得,即可得到答案. 【详解】 作点A关于BC和CD的对称点,连接, 解析:160° 【分析】要使周长最小,即利用点的对称,使三角形的三边在同一直线上,作点A关于BC和CD的对称点,即可得到,进而求得,即可得到答案. 【详解】 作点A关于BC和CD的对称点,连接,交BC于M,交CD于N, 则即为周长最小值 , 故答案为:160°. 【点睛】本题考查的是轴对称—最短路线问题,涉及平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质,熟练掌握知识点是解题的关键. 17.或 【分析】根据完全平方公式的特点即可确定k的值. 【详解】∵ ∴或 故答案为: 或 【点睛】本题考查了完全平方式,两数的平方和加上或减去这两个数的积的2倍,即为完全平方式,掌握此特 解析: 或 【分析】根据完全平方公式的特点即可确定k的值. 【详解】∵ ∴或 故答案为: 或 【点睛】本题考查了完全平方式,两数的平方和加上或减去这两个数的积的2倍,即为完全平方式,掌握此特点是解题的关键,但要注意不要忽略负的情况. 18.10##十 【分析】设这个多边形的边数为n,根据内角和公式得出(n﹣2)×180°=1440,求出方程的解即可. 【详解】解:设这个多边形的边数为n, 则(n﹣2)×180°=1440°, 解析:10##十 【分析】设这个多边形的边数为n,根据内角和公式得出(n﹣2)×180°=1440,求出方程的解即可. 【详解】解:设这个多边形的边数为n, 则(n﹣2)×180°=1440°, 解得:n=10, 即这个多边形是10边形, 故答案为:10. 【点睛】本题考查的是多边形的内角和定理的应用,熟练的利用方程思想解决多边形的内角和问题是解本题的关键. 19.cm/s或cm/s 【分析】由于∠C=∠A,所以当△CDM与△AMN全等时,分两种情况:①△CDM≌△AMN;②△CDM≌△ANM.根据全等三角形的对应边相等求出AN,再根据速度=路程÷时间求解即 解析:cm/s或cm/s 【分析】由于∠C=∠A,所以当△CDM与△AMN全等时,分两种情况:①△CDM≌△AMN;②△CDM≌△ANM.根据全等三角形的对应边相等求出AN,再根据速度=路程÷时间求解即可. 【详解】解:设点M、N的运动时间为ts,则CM=2tcm. ∵三角形ABC是等边三角形, ∴∠C=∠A=60°, ∴当△CDM与△AMN全等时,分两种情况: ①如果△CDM≌△AMN,那么AN=CM=2tcm, ∴点N的运动速度是=2(cm/s); ②如果△CDM≌△ANM,那么CM=AM=AC=4cm,AN=CD=BC-BD=5cm, ∴点M的运动时间为:=2(s), ∴点N的运动速度是cm/s. 综上可知,点N的运动速度是2或cm/s. 故答案为:2 cm/s或cm/s. 【点睛】本题考查了全等三角形的对应边相等的性质,等边三角形的性质,路程、速度与时间之间的关系,进行分类讨论是解题的关键. 三、解答题 20.(1);(2) 【分析】(1)利用多项式乘多项式法则直接求解; (2)先提取公因式,再利用完全平方公式分解. 【详解】(1)解:原式 . (2)解:原式 【点睛】本题考查了多项式乘多 解析:(1);(2) 【分析】(1)利用多项式乘多项式法则直接求解; (2)先提取公因式,再利用完全平方公式分解. 【详解】(1)解:原式 . (2)解:原式 【点睛】本题考查了多项式乘多项式及整式的因式分解,掌握多项式乘多项式法则和因式分解的完全平方公式是解决本题的关键. 21., 【分析】先根据分式的混合运算进行化简,再代值计算即可. 【详解】解:原式 当时,原式. 【点睛】本题考查分式的化简求值,解题关键是掌握分式的混合运算法则. 解析:, 【分析】先根据分式的混合运算进行化简,再代值计算即可. 【详解】解:原式 当时,原式. 【点睛】本题考查分式的化简求值,解题关键是掌握分式的混合运算法则. 22.见解析 【分析】由BE=CF,可得出BE+EC=EC+CF,即BC=EF,结合∠B=∠DEF,∠ACB=∠F,即可证出△ABC≌△DEF(ASA),再利用全等三角形的性质即可证出∠A=∠D. 【 解析:见解析 【分析】由BE=CF,可得出BE+EC=EC+CF,即BC=EF,结合∠B=∠DEF,∠ACB=∠F,即可证出△ABC≌△DEF(ASA),再利用全等三角形的性质即可证出∠A=∠D. 【详解】证明:∵BE=CF, ∴BE+EC=EC+CF, 即BC=EF. 在△ABC和△DEF中, , ∴△ABC≌△DEF(ASA), ∴∠A=∠D. 【点睛】本题考查了全等三角形的判定与性质,利用全等三角形的判定定理ASA,证出△ABC≌△DEF是解题的关键. 23.(1)270 (2)220 (3) (4),理由见解析 【分析】(1)利用三角形的外角定理及直角三角形的性质求解; (2)利用三角形的外角等于与它不相邻的两个内角和求解; (3)根据(1 解析:(1)270 (2)220 (3) (4),理由见解析 【分析】(1)利用三角形的外角定理及直角三角形的性质求解; (2)利用三角形的外角等于与它不相邻的两个内角和求解; (3)根据(1)、(2)中思路即可求解; (4)根据折叠对应角相等,得到,,进而求出,,最后利用即可求解. (1) 解:如下图所示: 在△AEF中,由外角性质可知:∠1=∠A+∠EFA=90°+∠EFA,∠2=∠A+∠AEF=90°+∠AEF, ∴∠1+∠2=(90°+∠EFA)+( 90°+∠AEF)=180°+∠EFA+∠AEF, ∵△ABC为直角三角形, ∴∠A=90°,∠EFA+∠AEF=180°-∠A=90°, ∴∠1+∠2=180°+90°=270°. (2) 解:如下图所示: 在△AEF中,由外角性质可知:∠1=∠A+∠EFA,∠2=∠A+∠AEF, ∴∠1+∠2=(∠A+∠EFA)+( ∠A+∠AEF)=(∠A +∠EFA+∠AEF)+∠A=180°+40°=220°. (3) 解:由(1)、(2)中思路,由三角形外角性质可知: ∠1=∠A+∠EFA,∠2=∠A+∠AEF, ∴∠1+∠2=(∠A+∠EFA)+( ∠A+∠AEF)=(∠A +∠EFA+∠AEF)+∠A=180°+∠A, ∴与的关系是:∠1+∠2=180°+∠A. (4) 解:与的关系为:,理由如下: 如图, ∵是由折叠得到的, ∴,, ∴,, ∴, 又∵, ∴, ∴与的关系. 【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件. 24.(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元 (2)方案一:商场购进甲种牛奶64件,乙种牛奶23件;方案二:商场购进甲种牛奶67件,乙种牛奶24件;方案三:商场购进甲种牛奶70件,乙种牛 解析:(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元 (2)方案一:商场购进甲种牛奶64件,乙种牛奶23件;方案二:商场购进甲种牛奶67件,乙种牛奶24件;方案三:商场购进甲种牛奶70件,乙种牛奶25件 【分析】(1)设甲种牛奶进价为x元,则乙种牛奶进价为元,根据“甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同”列出方程组,解之即可; (2)设该商场购进乙种牛奶数量为m件,则该商场购进甲种牛奶数量为件,根据“两种牛奶的总数不超过95件,销售的总利润不低于371元”列出不等式,再进一步求出可行的方案即可. (1) 解:设甲种牛奶进价为x元,则乙种牛奶进价为元 根据题意,得: ∴ 当时,,且 ∴是方程的解 ∴ ∴甲种牛奶、乙种牛奶的进价分别是每件45元、50元; (2) 设该商场购进乙种牛奶数量为m件,则该商场购进甲种牛奶数量为件 ∵两种牛奶的总数不超过95件 ∴ ∴ ∵销售的总利润(利润=售价-进价)不低于371元 ∴ ∴ ∴ ∴ ∴方案一:商场购进甲种牛奶64件,乙种牛奶23件; 方案二:商场购进甲种牛奶67件,乙种牛奶24件; 方案三:商场购进甲种牛奶70件,乙种牛奶25件. 【点睛】本题考查二元一次方程组的应用及一元一次不等式组的应用,解题关键是理清题意找到等量关系及不等关系列出方程组(或不等式组). 25.(1)(x-y-4)2;(2)①(x-y-4)2;②(m-3)(m+1)(m-1)2 【分析】(1)将x2+2x-24写成x2+(6-4)x+6×(-4),根据材料1的方法可得(x+6)(x-4) 解析:(1)(x-y-4)2;(2)①(x-y-4)2;②(m-3)(m+1)(m-1)2 【分析】(1)将x2+2x-24写成x2+(6-4)x+6×(-4),根据材料1的方法可得(x+6)(x-4)即可; (2)①令x-y=A,原式可变为A2-8A+16,再利用完全平方公式即可; ②令B=m(m-2)=m2-2m,原式可变为B(B-2)-3,即B2-2B-3,利用十字相乘法可分解为(B-3)(B+1),再代换后利用十字相乘法和完全平方公式即可. 【详解】解:(1)x2+2x-24=x2+(6-4)x+6×(-4)=(x+6)(x-4); (2)①令x-y=A,则原式可变为A2-8A+16, A2-8A+16=(A-4)2=(x-y-4)2, 所以(x-y)2-8(x-y)+16=(x-y-4)2; ②设B=m2-2m,则原式可变为B(B-2)-3, 即B2-2B-3=(B-3)(B+1) =(m2-2m-3)(m2-2m+1) =(m-3)(m+1)(m-1)2, 所以m(m-2)(m2-2m-2)-3=(m-3)(m+1)(m-1)2. 【点睛】本题考查十字相乘法,公式法分解因式,掌握十字相乘法和完全平方公式的结构特征是正确应用的前提. 26.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键. 27.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可. (1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 初二 上册 期末 强化 综合 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文