人教版中学七年级数学下册期末考试题及解析.doc
《人教版中学七年级数学下册期末考试题及解析.doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末考试题及解析.doc(27页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末考试题及解析 一、选择题 1.如图,直线a,b,c被射线l和m所截,则下列关系正确的是( ) A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角 C.∠3与∠4是同位角 D.∠2与∠3是内错角 2.下列现象属于平移的是() A.投篮时的篮球运动 B.随风飘动的树叶在空中的运动 C.刹车时汽车在地面上的滑动 D.冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中位于第二象限的点是( ) A. B. C. D. 4.下列命题中,假命题的数量为( ) ①如果两个角的和等于平角,那么这两个角互为补角; ②内错角相等; ③两个锐角的和是锐角; ④如果直线a∥b,b∥c,那么a∥c. A.3 B.2 C.1 D.0 5.如图,已知平分,平分,.下列结论正确的有( ) ①;②;③;④若,则. A.1个 B.2个 C.3个 D.4个 6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个 7.如图,已知直线,的平分线交于点F,,则等于( ) A. B. C. D. 8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( ) A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0) 九、填空题 9.已知+|3x+2y﹣15|=0,则=_____. 十、填空题 10.若点与关于轴对称,则____________________________. 十一、填空题 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°. 十二、填空题 12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___. 十三、填空题 13.如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA'恰好落在折痕EF上,点B的对应点B'落在长方形外,B'F与CD交于点H,已知∠B'HC=134°,则∠AGE=_____°. 十四、填空题 14.已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=__. 十五、填空题 15.点到两坐标轴的距离相等,则________. 十六、填空题 16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______. 十七、解答题 17.(1)计算: (2)计算: (3)已知,求的值. 十八、解答题 18.已知:,,,求下列各式的值: (1)的值; (2)的值. 十九、解答题 19.如图,三角形中,点,分别是,上的点,且,. (1)求证:;(完成以下填空) 证明:(已知) (______________), 又(已知) (等量代换), (_______________). (2)与的平分线交于点,交于点, ①若,,则_______; ②已知,求.(用含的式子表示) 二十、解答题 20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,. (1)将向右平移4个单位长度得到,画出平移后的; (2)将向下平移5个单位长度得到,画出平移后的; (3)直接写出三角形的面积为______平方单位.(直接写出结果) 二十一、解答题 21.已知=0,求实数a、b的值并求出的整数部分和小数部分. 二十二、解答题 22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 二十三、解答题 23.已知点C在射线OA上. (1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数; (2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示) (3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系. 二十四、解答题 24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 二十五、解答题 25.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线, (1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小. (2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________, 如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________ (3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角、邻补角、同位角、内错角的定义分别分析即可. 【详解】 解:A、∠1与∠2是邻补角,故原题说法错误; B、∠1与∠3不是同旁内角,故原题说法错误; C、∠3与∠4是同位角,故原题说法正确; D、∠2与∠3不是内错角,故原题说法错误; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义. 2.C 【分析】 判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化. 【详解】 解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ; B 解析:C 【分析】 判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化. 【详解】 解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ; B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象; C. 刹车时汽车在地面上的滑动,此选项是平移现象; D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C. 【点睛】 本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键. 3.B 【分析】 第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可. 【详解】 解:根据第二象限的点的坐标的特征: 横坐标符号为负,纵坐标符号为正, 各选项中只有B(-2,3)符合, 故选:B. 【点睛】 本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④. 【详解】 根据平角和补角的性质可以判断①是真命题; 两直线平行内错角相等,故②是假命题; 两锐角的和可能是钝角也可能是直角,故③是假命题; 平行于同一条直线的两条直线平行,故④是真命题, 因此假命题有两个②和③, 故选:B. 【点睛】 本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键. 5.C 【分析】 由三个已知条件可得AB∥CD,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC∥BD,可知③错误;由及平分,可得∠ACP=∠E,得AC∥BD,从而由平行线的性质易得,即④正确. 【详解】 ∵平分,平分 ∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP ∵ ∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜ ∴ 故①正确 ∵ ∴∠ABE=∠CDB ∵∠CDB+∠CDF=180゜ ∴ 故②正确 由已知条件无法推出AC∥BD 故③错误 ∵,∠ACD=2∠ACP=2∠2 ∴∠ACP=∠E ∴AC∥BD ∴∠CAP=∠F ∵∠CAB=2∠1=2∠CAP ∴ 故④正确 故正确的序号为①②④ 故选:C. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键. 6.B 【分析】 根据平方根与立方根的定义与性质逐个判断即可. 【详解】 (1)是36的一个平方根,则此说法正确; (2)16的平方根是,则此说法错误; (3),则此说法正确; (4),4是有理数,则此说法错误; (5)当时,无意义,则此说法错误; 综上,正确的说法有2个, 故选:B. 【点睛】 本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键. 7.B 【分析】 根据平行线的性质推出,,然后结合角平分线的定义求解即可得出,从而得出结论. 【详解】 解:∵, ∴,, ∵的平分线交于点F, ∴, ∴, ∴, 故选:B. 【点睛】 本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键. 8.C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度, ∴点P1秒走个半圆, 当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0), …, 可得移动4次图象完成一个循环, ∵2021÷4=505…1, ∴点P运动到2021秒时的坐标是(2021,1), 故选:C. 【点睛】 此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 九、填空题 9.3 【分析】 直接利用非负数的性质得出x,y的值进而得出答案. 【详解】 ∵+|3x+2y﹣15|=0, ∴x+3=0,3x+2y-15=0, ∴x=-3,y=12, ∴=. 故答案是:3. 【点睛 解析:3 【分析】 直接利用非负数的性质得出x,y的值进而得出答案. 【详解】 ∵+|3x+2y﹣15|=0, ∴x+3=0,3x+2y-15=0, ∴x=-3,y=12, ∴=. 故答案是:3. 【点睛】 考查了非负数的性质,正确得出x,y的值是解题关键. 十、填空题 10.0 【分析】 根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴, 故答案为:0. 【点睛】 本题主要考查了平面直角坐标系内点 解析:0 【分析】 根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴, 故答案为:0. 【点睛】 本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键. 十一、填空题 11.10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=1 解析:10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°, ∵AD是角平分线, ∴∠BAD=∠BAC=×60°=30°, ∵AE是高, ∴∠BAE=90°-∠B=90°-50°=40°, ∴∠DAE=∠BAE-∠BAD=40°-30°=10°. 故答案为:10. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 十二、填空题 12.115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD 解析:115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD,∠C=50°, ∴∠C=∠AOC=50°, ∵OE平分∠AOC, ∴25°, ∵OE⊥OF, ∴∠EOF=90°, ∴∠AOF=∠AOE+∠EOF=115°, 故答案为:115°. 【点睛】 本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解. 十三、填空题 13.11 【分析】 由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数. 【详解】 解:如图, , , , , 折叠, , , , , 故答案为:11. 解析:11 【分析】 由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数. 【详解】 解:如图, , , , , 折叠, , , , , 故答案为:11. 【点睛】 本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解. 十四、填空题 14.【分析】 根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可. 【详解】 解:∵实数a、b互为相反数, ∴a+b=0, ∵c、d互为倒数, ∴cd=1, ∵3<<4, ∴的整数部分 解析: 【分析】 根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可. 【详解】 解:∵实数a、b互为相反数, ∴a+b=0, ∵c、d互为倒数, ∴cd=1, ∵3<<4, ∴的整数部分为3,e=3, ∵2<<3, ∴的小数部分为﹣2,即f=﹣2, ∴-+e﹣f = =4- 故答案为:4-. 【点睛】 本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键. 十五、填空题 15.或. 【分析】 根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可. 【详解】 解:∵点到两坐标轴的距离相等, ∴, 或, 解得,或, 故答案为:或. 【点睛】 本题考查了点到坐标轴的距 解析:或. 【分析】 根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可. 【详解】 解:∵点到两坐标轴的距离相等, ∴, 或, 解得,或, 故答案为:或. 【点睛】 本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 十六、填空题 16.(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,- 解析:(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…, 可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4 ∵2021÷8=252…5, ∴的坐标为(252×4+2,-1), ∴点的坐标是是(1010,-1). 故答案为:(1010,-1). 【点睛】 本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般. 十七、解答题 17.(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; (3)直接利用平方根的定义计算得出答案. 【详解】 解:(1) , ; (2) , , ; (3)∵ ∴ 解得:或. 故答案为:(1)2;(2)6;(3) 或 【点睛】 本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2) 解析:(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2)∵, ∴===13. 【点睛】 本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键. 十九、解答题 19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;② 【分析】 (1)根据平行线的判定及性质即可证明; (2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可 解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;② 【分析】 (1)根据平行线的判定及性质即可证明; (2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可计算出; ②根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出. 【详解】 解:证明(1)证; 证明:(已知), (两直线平行,同位角相等), 又(已知) (等量代换), (同位角相等,两直线平行), 故答案是:两直线平行,同位角相等;同位角相等,两直线平行. (2)①与的平分线交于点,交于点, 且,, , , 由(1)知, , 在中, , , , 故答案是:; ②, , 由(1)知, , , 在中, , 故答案是:. 【点睛】 本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解. 二十、解答题 20.(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应 解析:(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积. 【详解】 解:(1)平移后的三角形如下图所示; (2)平移后的三角形如下图所示; (3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积, ∴S△ABC . 【点睛】 本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差. 二十一、解答题 21.4, 【分析】 根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解. 【详解】 解:根据题意得,3a-b=0,a2-49=0且a+7>0, 解得a=7, 解析:4, 【分析】 根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解. 【详解】 解:根据题意得,3a-b=0,a2-49=0且a+7>0, 解得a=7,b=21, ∵16<21<25, ∴的整数部分是4,小数部分是. 【点睛】 本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 二十二、解答题 22.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 二十三、解答题 23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2) 解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系; (3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′. 【详解】 解:(1)∵CD∥OE, ∴∠AOE=∠OCD=120°, ∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°; (2)∠OCD+∠BO′E′=360°-α. 证明:如图②,过O点作OF∥CD, ∵CD∥O′E′, ∴OF∥O′E′, ∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′, ∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α, ∴∠OCD+∠BO′E′=360°-α; (3)∠AOB=∠BO′E′. 证明:∵∠CPO′=90°, ∴PO′⊥CP, ∵PO′⊥OB, ∴CP∥OB, ∴∠PCO+∠AOB=180°, ∴2∠PCO=360°-2∠AOB, ∵CP是∠OCD的平分线, ∴∠OCD=2∠PCO=360°-2∠AOB, ∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB, ∴360°-2∠AOB+∠BO′E′=360°-∠AOB, ∴∠AOB=∠BO′E′. 【点睛】 此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键. 二十四、解答题 24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 二十五、解答题 25.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°. 【分析】 (1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠ 解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°. 【分析】 (1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论; (2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论; (3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可. 【详解】 解:(1)∠ACB的大小不变, ∵直线MN与直线PQ垂直相交于O, ∴∠AOB=90°, ∴∠OAB+∠OBA=90°, ∴∠PAB+∠ABM=270°, ∵AC、BC分别是∠BAP和∠ABM角的平分线, ∴∠BAC=∠PAB,∠ABC=∠ABM, ∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°, ∴∠ACB=45°; (2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上, ∴∠CAB=∠BAQ, ∵AC平分∠PAB, ∴∠PAC=∠CAB, ∴∠PAC=∠CAB=∠BAO=60°, ∵∠AOB=90°, ∴∠ABO=30°, ∵将△ABC沿直线AB折叠,若点C落在直线MN上, ∴∠ABC=∠ABN, ∵BC平分∠ABM, ∴∠ABC=∠MBC, ∴∠MBC=∠ABC=∠ABN, ∴∠ABO=60°, 故答案为:30°,60°; (3)∵AE、AF分别是∠BAO与∠GAO的平分线, ∴∠EAO=∠BAO,∠FAO=∠GAO, ∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO, ∵AE、AF分别是∠BAO和∠OAG的角平分线, ∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°. 在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E, ∴∠EAO= ∠BAO,∠EOQ=∠BOQ, ∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO, ∵有一个角是另一个角的倍,故有: ①∠EAF=∠F,∠E=30°,∠ABO=60°; ②∠F=∠E,∠E=36°,∠ABO=72°; ③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去); ④∠E=∠F,∠E=54°,∠ABO=108°(舍去); ∴∠ABO为60°或72°. 【点睛】 本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 考试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文