初二上册期末模拟数学质量检测试卷答案.doc
《初二上册期末模拟数学质量检测试卷答案.doc》由会员分享,可在线阅读,更多相关《初二上册期末模拟数学质量检测试卷答案.doc(20页珍藏版)》请在咨信网上搜索。
初二上册期末模拟数学质量检测试卷答案 一、选择题 1.下面图形中,是轴对称图形的是( ) A. B. C. D. 2.春天柳絮发芽开花,风一吹就到处飞扬,柳絮纤维据测定直径为0.00000105m,0.00000105这个数用科学记数法可表示为( ) A. B. C. D. 3.已知:,,则的值是( ) A. B. C.4 D. 4.当时,下列分式中有意义的是( ) A. B. C. D. 5.下列等式从左到右的变形,是因式分解的是( ) A.a(x+y)=ax+ay B.2a(b+c)﹣3(b+c)=(2a﹣3)(b+c) C.15x5=3x2•x5 D.a2+2a+1=a(a+2)+1 6.分式可变形为( ) A. B. C. D. 7.如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( ) A.AC=BD B.∠DAB=∠CBA C.∠C=∠D D.BC=AD 8.下列说法错误的是( ). A.“对角线互相平分的四边形是平行四边形”是真命题 B.中心对称的两个图形中,连接对称点的线段都被对称中心平分 C.用若干正六边形能镶嵌整个平面 D.解分式方程时,产生增根,则 9.如图,将一张含有角的三角形纸片的两个顶点叠放在长方形纸条的两条对边上,若,则的度数为( ) A. B. C. D. 10.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10cm,则△DEB的周长为( ) A.4cm B.6cm C.10cm D.不能确定 二、填空题 11.若分式的值为0,则x=________. 12.若点A(m,3)与点B(4,n)关于y轴对称,则(m+n)2021=_____. 13.已知,则的值是_____. 14.已知,m,n为正整数,则=______.(用含a,b的式子表示) 15.如图,在等边三角形ABC中,BC边上的中线AD=5,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是 ___. 16.若是关于x的完全平方式,则________. 17.若,则的值是_________. 18.如图,在中,,,,线段,,两点分别在线段和过点且垂直于的射线上运动,当______时,和全等. 三、解答题 19.分解因式 (1); (2). 20.先化简,再求值:,其中a=2021. 21.如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么? 22.(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A; 【拓展应用】 (2)如图2,在四边形ABDC中,对角线AD平分∠BAC. ①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数; ②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系. 24.超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如下表. 甲 乙 进价(元/袋) m m-2 售价(元/袋) 20 13 已知用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同. (1)求m的值; (2)要使购进的甲、乙两种绿色袋装食品共800袋,且总利润不少于4800元,则该超市至少购进甲种绿色袋装食品多少袋? 24.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多. 十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子和分解因式,如图: ; . 请你仿照以上方法,探索解决下列问题: (1)分解因式:; (2)分解因式:. 25.已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°. (1)已知a,b满足等式|a +b|+b2+4b=-4. ①求A点和B点的坐标; ②如图1,连BD交y轴于点H,求点H的坐标; (2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论. 26.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:______________________________________________; 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 【参考答案】 一、选择题 2.B 解析:B 【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可. 【详解】解:A中图形不是轴对称图形,不符合题意; B中图形是轴对称图形,符合题意; C中图形不是轴对称图形,不符合题意; D中图形不是轴对称图形,不符合题意; 故选:B. 【点睛】本题考查轴对称图形的定义,理解定义,找准对称轴是解答的关键. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:. 故选:C. 【点睛】本题考查用科学记数法表示较小的数,解题的关键是掌握一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.D 解析:D 【分析】结合幂的乘方的运算法则,得到,然后结合同底数幂的乘除法法则即可计算. 【详解】 ∴= =4÷8×9= 故选:D 【点睛】本题涉及同底数幂的运算,熟练掌握幂的乘方运算法则是解题的关键. 5.C 解析:C 【分析】根据分式有意义的条件是分母不为,逐项对选项进行判定即可. 【详解】解:A、当时,的分母,该选项不符合题意; B、当时,的分母,该选项不符合题意; C、当时,的分母,该选项符合题意; D、当时,的分母,该选项不符合题意; 故选:C. 【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是分母不为是解决问题的关键. 6.B 解析:B 【分析】根据因式分解定义逐项判定即可. 【详解】解:A、a(x+y)=ax+ay是整式乘法运算,不是因式分解,此选项不符合题意; B、2a(b+c)﹣3(b+c)=(2a﹣3)(b+c)是因式分解,此选项符合题意; C、15x5=3x2•x5不是把多项式化成乘积式,不是因式分解,此选项不符合题意; D、a2+2a+1=a(a+2)+1等式右边不是积的形式,不是因式分解,此选项不符合题意; 故选:B. 【点睛】本题考查因式分解,熟练掌握因式分解的定义是解题的关键. 7.D 解析:D 【分析】根据分式的基本性质进行恒等变形即可得到结论 【详解】解:根据分式的基本性质变形,并将分式的分子和分母同时乘以﹣1得,, 故选:D. 【点睛】本题考查的是分式的基本性质,熟知分子、分母同时乘以同一个不为0的数,分式的值不变是解答此题的关键. 8.D 解析:D 【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案. 【详解】解:由题意得,∠ABD=∠BAC, A.在△ABC与△BAD中, , ∴△ABC≌△BAD(SAS); 故选项正确; B.在△ABC与△BAD中, , △ABC≌△BAD(ASA), 故选项正确; C.在△ABC与△BAD中, , △ABC≌△BAD(AAS), 故选项正确; D.在△ABC与△BAD中, BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误; 故选:D. 【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 9.D 解析:D 【分析】根据平行四边形的判定定理可以判断A,根据中心对称的性质可以判断B,根据正多边形镶嵌的条件可以判断C,根据分式方程产生增根的情况计算即可判断D. 【详解】解:A选项,平行四边形的一个判定定理是:对角线互相平分的四边形是平行四边形,是真命题,正确,符合题意; B选项,中心对称的两个图形中,连接对称点的线段都被对称中心平分,正确,符合题意; C选项,正六边形的每个内角都是,,可以镶嵌整个平面,正确,符合题意; D选项,原分式方程化为,因为分式方程有增根,故可将代入得,错误,不符合题意; 故选D. 【点睛】本题考查了真命题和假命题的判断、平行四边形的判定定理、中心对称的性质、平面镶嵌、分式方程,正确掌握相关性质是解题的关键. 10.D 解析:D 【分析】依据平行线的性质,即可得到∠3=∠2=50°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=50°−30°=20°. 【详解】解:如图,∵长方形纸条的对边平行,∠2=50°, ∴∠2=∠3=50°, 根据三角形外角性质,可得∠3=∠1+30°, ∴∠1=50°−30°=20°, 故选:D. 【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题的关键是掌握平行线的性质:两直线平行,同位角相等. 11.C 解析:C 【分析】根据角平分线定义和性质得出∠EAD=∠CAD,CD=DE,根据全等三角形的判定得出△DCA≌△DEA,根据全等三角形的性质得出AE=AC,求出AE=BC,再求出△DEB的周长=AB即可. 【详解】解:∵AD平分∠CAB,DE⊥AB,∠C=90°, ∴∠EAD=∠CAD,∠C=∠AED=90°,CD=DE, 在△DCA和△DEA中, , ∴△DCA≌△DEA(AAS), ∴AE=AC, ∵AC=BC, ∴AE=AC=BC, ∵AB=10cm, ∴△DEB的周长为BD+DE+BE =BD+CD+BE =BC+BE =AE+BE =AB =10cm, 故选:C. 【点睛】本题考查了角平分线的性质和全等三角形的性质和判定,能求出CD=DE和AE=AC是解此题的关键. 二、填空题 12.5 【分析】求出分式的分子等于0且分母不为0时的的值即可. 【详解】解:由题意得:, 解得, 故答案为:5. 【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 13.A 解析:-1 【分析】根据关于y轴对称点的坐标特征求出m、n的值,再代入计算即可. 【详解】解:∵点A(m,3)与点B(4,n)关于y轴对称, ∴m=-4,n=3, ∴(m+n)2021=(-4+3)2021=-1, 故答案为:-1. 【点睛】本题考查关于y轴对称的点的坐标,掌握关于y轴对称的点的坐标的特征是解决问题的前提,求出m、n的值是得出正确答案的关键.(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 14.2 【分析】根据分式的运算法则即可得. 【详解】解:可化为, 则, 故答案为:2. 【点睛】本题考查了分式的减法,熟练掌握分式的运算法则是解题关键.异分母分式相加减,先通分,化成同分母分式相加减;同分母分式相加减,分母不变,分子相加减. 15. 【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可. 【详解】解:∵, ∴, ∴. 故答案为: 【点睛】本题考查幂的乘方公式和同底数幂的除法.熟练掌握公式,并能逆运用是解题关键. 16.5 【分析】根据等边三角形的性质,可知B与C关于AD对称,过C作CF⊥AB交AD于点E,交AB于点F,则EB+EF的最小值为CF的长,求出CF的长即可求解. 【详解】解:∵△ABC是等边三角形, 解析:5 【分析】根据等边三角形的性质,可知B与C关于AD对称,过C作CF⊥AB交AD于点E,交AB于点F,则EB+EF的最小值为CF的长,求出CF的长即可求解. 【详解】解:∵△ABC是等边三角形,D是BC边中点, ∴AD⊥BC, ∴B与C关于AD对称, 过C作CF⊥AB交AD于点E,交AB于点F, 则BE+EF=CE+EF=CF,则EB+EF的最小值为CF的长, ∵AD=5, ∴CF=5, 故答案为5. 【点睛】本题考查轴对称求最短距离,熟练掌握利用轴对称求最短距离的方法,此题确定EB+EF的最小值为CF的长是解题的关键. 17.【分析】利用完全平方公式的结构特征判断即可确定出的值. 【详解】解:是关于的完全平方式, , 故答案为:. 【点睛】此题考查了完全平方式,解题的关键是熟练掌握完全平方公式. 解析: 【分析】利用完全平方公式的结构特征判断即可确定出的值. 【详解】解:是关于的完全平方式, , 故答案为:. 【点睛】此题考查了完全平方式,解题的关键是熟练掌握完全平方公式. 18.14 【分析】根据即可求得其值. 【详解】解:, 故答案为:14. 【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据即可求得其值. 【详解】解:, 故答案为:14. 【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 19.5或10 【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论. 【详解】分两种情况: 当AQ=5时, ∵, ∴AQ=BC, ∵AD⊥AC, ∴∠Q 解析:5或10 【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论. 【详解】分两种情况: 当AQ=5时, ∵, ∴AQ=BC, ∵AD⊥AC, ∴∠QAP=∠ACB=, ∵AB=PQ, ∴≌△PQA(HL); 当AQ=10时, ∵, ∴AQ=AC, ∵AD⊥AC, ∴∠QAP=∠ACB=, ∵AB=PQ, ∴△ABC≌△QPA, 故答案为:5或10. 【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键. 三、解答题 20.(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解析:(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+3a+12 =+3a-4 =(a-1)(a+4). 【点睛】此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 21.,. 【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案. 【详解】解: , 当a=2021时,原式=. 【点睛】本题主要考查了分式的化简求值,正确掌握相关运算 解析:,. 【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案. 【详解】解: , 当a=2021时,原式=. 【点睛】本题主要考查了分式的化简求值,正确掌握相关运算法则是解题关键. 22.相等.见解析 【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论. 【详解】解:相等; 理由: ∵△ABE≌△DCE, ∴∠AEB=∠DEC, ∴∠DEC-∠AEC=∠A 解析:相等.见解析 【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论. 【详解】解:相等; 理由: ∵△ABE≌△DCE, ∴∠AEB=∠DEC, ∴∠DEC-∠AEC=∠AEB-∠AEC, 即:∠AED=∠BEC. 【点睛】本题考查了全等三角形的性质,解题的关键是了解全等三角形的对应角相等,难度不大. 23.(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD. 【分析】(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换 解析:(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD. 【分析】(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系; (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答. 【详解】(1)证明:∵∠ACD是△ABC的外角 ∴∠ACD=∠A+∠ABC ∵CE平分∠ACD ∴ 又∵∠ECD=∠E+∠EBC ∴ ∵BE平分∠ABC ∴ ∴ ∴; (2)①∵∠ACD=130°,∠BCD=50° ∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80° ∵∠CBA=40° ∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60° ∵AD平分∠BAC ∴ ∴∠CDA=180°﹣∠CAD﹣∠ACD=20°; ②∠CAD+41°=∠CBD 设∠CBD=α ∵∠ABD+∠CBD=180° ∴∠ABC=180°﹣2α ∵∠ACB=82° ∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82° ∵AD平分∠BAC ∴∠CAD=∠CAB=α﹣41° ∴∠CAD+41°=∠CBD. 【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键. 24.(1)m的值为10 (2)至少购进甲种绿色贷装食品160袋 【分析】(1) 利用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同列分式方程,再解分式方程即可; (2)设 解析:(1)m的值为10 (2)至少购进甲种绿色贷装食品160袋 【分析】(1) 利用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同列分式方程,再解分式方程即可; (2)设购进甲种绿色贷装食品x袋,由两种绿色袋装食品的利润之和不少于4800元,列不等式,再解不等式即可. (1)解:由题意得:解得:m=10, 经检验,m=10为原方程的解, 所以m的值为10 (2)设购进甲种绿色贷装食品x袋,由题意得:(20-10)x+(13-8)(800-x)≥4800, 解得x≥160, 答:至少购进甲种绿色贷装食品160袋. 【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,确定相等关系与不等关系列方程或不等式是解本题的关键. 25.(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x+1). 【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1 解析:(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x+1). 【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果. 【详解】(1)y2﹣7y+12=(x﹣3)(x﹣4); (2)3x2﹣2x﹣1=(x﹣1)(3x+1). 【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键. 26.(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y 解析:(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案; (2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立. 【详解】解:(1)∵, ∴, ∴, ∴,, ∴, ∴, ∴A(0,2),B(2,0); ②过C作x轴垂线交BA的延长线于E, ∵OA=OB=2,∠AOB=90°, ∴△AOB是等腰直角三角形, ∴∠ABO=45°, ∵EC⊥BC, ∴△BCE是等腰直角三角形, ∴BC=EC,∠BCE=90°=∠ACD, ∴∠ACE=∠DCB, ∵AC=DC, ∴△CEA≌△CBD, ∴∠CBD=∠E=45°, ∴OH=OB=2, ∴H(0,2); (2)补全图形,如图: ∵点B、E关于y轴对称, ∴OB=OE, ∵a+b=0,即 ∴OA=OB=OE 延长OF至G使FG=OF,连DG,CG, ∵OF=FG,∠OFE=∠DFG,EF=DF ∴△DFG≌△EFO ∴DG=OE=OA,∠DGF=∠EOF ∴DG∥OE ∴∠CDG=∠DCO; ∵∠ACO+∠CAO=∠ACO+∠DCO=90°, ∴∠DCO=∠CAO; ∴∠CDG=∠DCO=∠CAO; ∵CD=AC,OA=DG ∴△DCG≌△ACO ∴OC=GC,∠DCG=∠ACO ∴∠OCG=90°, ∴∠COF=45°, ∴△OCG是等腰直角三角形, 由三线合一定理得CF⊥OF ∵∠OCF=∠COF=45°, ∴CF=OF; 【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题. 27.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 期末 模拟 数学 质量 检测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文