2022年人教版中学七7年级下册数学期末质量检测(含答案).doc
《2022年人教版中学七7年级下册数学期末质量检测(含答案).doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末质量检测(含答案).doc(22页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末质量检测(含答案) 一、选择题 1.化简的结果为() A.16 B.4 C.2 D. 2.下列各组图形,可经平移变换,由一个图形得到另一个图形的是( ) A. B. C. D. 3.在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ). A.等角的补角相等 B.平行于同一条直线的两条直线平行 C.对顶角相等 D.同位角相等 5.如图,已知,平分,平分,则下列判断:①;②平分;③;④中,正确的有( ) A.1个 B.2个 C.3个 D.4个 6.下列计算正确的是( ) A.=±2 B.(﹣3)0=0 C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3 7.如图,,,若,则的度数是( ) A.40° B.60° C.140° D.160° 8.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为( ) A.(﹣505,﹣505) B.(﹣505,506) C.(506,506) D.(505,﹣505) 九、填空题 9.计算:﹣=_____. 十、填空题 10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 十一、填空题 11.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ADB=__度. 十二、填空题 12.如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____. 十三、填空题 13.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为 ___. 十四、填空题 14.如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是__________. 十五、填空题 15.已知点,轴,,则点C的坐标是______ . 十六、填空题 16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________. 十七、解答题 17.计算: (1)|﹣2|+(﹣3)2﹣; (2); (3). 十八、解答题 18.求下列各式中的x值: (1)(x﹣1)2=4; (2)(2x+1)3+64=0; (3)x3﹣3=. 十九、解答题 19.请补全推理依据:如图,已知:,,求证:. 证明: ∵(已知) ∴( ) ∴( ) 又∵(已知) ∴( ) ∴( ) ∴( ) 二十、解答题 20.已知点P(﹣3a﹣4,a+2). (1)若点P在y轴上,试求P点的坐标; (2)若M(5,8),且PM//x轴,试求P点的坐标; (3)若点P到x轴,y轴的距离相等,试求P点的坐标. 二十一、解答题 21.已知的整数部分为a,小数部分为b. (1)求a,b的值: (2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.综合与探究 (问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动 (1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移) (2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动, ①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由. ②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系. 二十四、解答题 24.已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,,,点E、F均落在直线MN上. (1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF沿着NM的方向平移,如图2,求证:; (3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则________.(用含的代数式表示) 二十五、解答题 25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据算术平方根的的性质即可化简. 【详解】 =2 故选C. 【点睛】 此题主要考查算术平方根,解题的关键是熟知算术平方根的性质. 2.B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于 解析:B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于平移得到; C、图形由轴对称得到,不属于平移得到; D、图形的方向发生变化,不符合平移的性质,不属于平移得到; 故选:B. 【点睛】 本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想. 3.D 【分析】 设点 ,分轴和轴,两种情况讨论,即可求解. 【详解】 解:设点 , 若轴,则点P、Q的纵坐标相等, ∵线段,若点坐标是, ∴ , , 解得: 或 , ∴ 或 ; 若轴,则点P、Q的横坐标相等, ∵线段,若点坐标是, ∴ , , 解得: 或 , ∴ 或 , ∴点 或或 或 , ∴点不在第四象限. 故选:D. 【点睛】 本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键. 4.D 【分析】 根据等角的补角,平行线的性质,对顶角的性质,进行判断. 【详解】 A. 等角的补角相等,是真命题,不符合题意; B. 平行于同一条直线的两条直线平行,是真命题,不符合题意; C. 对顶角相等,是真命题,不符合题意; D. 两直线平行,同位角相等,原命题是假命题,符合题意; 故选D. 【点睛】 本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识. 5.B 【分析】 根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可. 【详解】 ∵, ∴,∴正确; ∵, ∴, ∵平分,平分, ∴,, ∴, ∴, ∴, ∴根据已知不能推出,∴错误;错误; ∵,, ∴, ∵, ∴, ∴,∴正确; 即正确的有个, 故选:. 【点睛】 本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键. 6.C 【分析】 根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】 A.原式=﹣2,故A错误; B.原式=1,故B错误; C、(﹣2a2b)2=4a4b2,计算正确; D、原式=﹣a2,故D错误; 故选C. 【点睛】 本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.A 【分析】 根据平行线的性质求出∠C,再根据平行线的性质求出∠B即可. 【详解】 解:∵BC∥DE,∠CDE=140°, ∴∠C=180°-140°=40°, ∵AB∥CD, ∴∠B=40°, 故选:A. 【点睛】 本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补. 8.A 【分析】 先分别求出点的坐标,再归纳类推出一般规律即可得. 【详解】 解:由题意得:点的坐标为,即, 点的坐标为,即, 点的坐标为,即, 归纳类推得:点的坐标为,其中为正整数, , 点的坐标为, 解析:A 【分析】 先分别求出点的坐标,再归纳类推出一般规律即可得. 【详解】 解:由题意得:点的坐标为,即, 点的坐标为,即, 点的坐标为,即, 归纳类推得:点的坐标为,其中为正整数, , 点的坐标为, 故选:A. 【点睛】 本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键. 九、填空题 9.﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 解析:﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 十、填空题 10.【分析】 如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质 解析: 【分析】 如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标. 【详解】 解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ, 设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1), ∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°, ∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PAQ=90°,∴AQ⊥x轴, ∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3). 故答案为:(4,﹣3). 【点睛】 本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键. 十一、填空题 11.101 【分析】 直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】 ∵在△ABC中,∠A=50°,∠C=72°, ∴∠ABC=180°−50° 解析:101 【分析】 直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】 ∵在△ABC中,∠A=50°,∠C=72°, ∴∠ABC=180°−50°−72°=58°, ∵BD是△ABC的一条角平分线, ∴∠ABD=29°, ∴∠ADB=180°−50°−29°=101°. 故答案为:101. 【点睛】 此题考查三角形内角和定理,解题关键在于掌握其定理. 十二、填空题 12.40° 【分析】 根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案. 【详解】 ∵AD∥BC,∠B=40°, ∴∠EAD=∠B=40°, ∵AD是∠EAC的平 解析:40° 【分析】 根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案. 【详解】 ∵AD∥BC,∠B=40°, ∴∠EAD=∠B=40°, ∵AD是∠EAC的平分线, ∴∠DAC=∠EAD=40°, 故答案为:40° 【点睛】 本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 十三、填空题 13.95° 【分析】 首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数. 解析:95° 【分析】 首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数. 【详解】 解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°, ∴∠BMF=100°,∠FNB=70°, ∵将△BMN沿MN翻折,得△FMN, ∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°, ∴∠F=∠B=180°−50°−35°=95°, ∴∠D=360°−100°−70°−95°=95°. 故答案为:95°. 【点睛】 此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键. 十四、填空题 14.、、、. 【详解】 解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53; 如果两次才输出结果:则x=(53-2)÷3=17; 如果三次才输出结果:则x=(17-2)÷3=5; 解析:、、、. 【详解】 解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53; 如果两次才输出结果:则x=(53-2)÷3=17; 如果三次才输出结果:则x=(17-2)÷3=5; 如果四次才输出结果:则x=(5-2)÷3=1; 则满足条件的整数值是:53、17、5、1. 故答案为53、17、5、1. 点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的. 十五、填空题 15.(6,2)或(4,2) 【分析】 根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解. 【详解】 ∵点A(1,2),AC∥x轴, 解析:(6,2)或(4,2) 【分析】 根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解. 【详解】 ∵点A(1,2),AC∥x轴, ∴点C的纵坐标为2, ∵AC=5, ∴点C在点A的左边时横坐标为1-5=-4, 此时,点C的坐标为(-4,2), 点C在点A的右边时横坐标为1+5=6, 此时,点C的坐标为(6,2) 综上所述,则点C的坐标是(6,2)或(-4,2). 故答案为(6,2)或(-4,2). 【点睛】 本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论. 十六、填空题 16.【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可. 【详解】 解:根据动点在平面直角坐标系中按图中箭头所示方向运动 解析: 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可. 【详解】 解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点, 第2次接着运动到点,第3次接着运动到点, 第4次运动到点,第5次接着运动到点,, 横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042, 纵坐标为2,0,1,0,每4次一轮, 经过第2021次运动后,, 故动点的纵坐标为2, 经过第2021次运动后,动点的坐标是. 故答案为:. 【点睛】 此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键. 十七、解答题 17.(1)9;(2)-;(3)-3. 【解析】 【分析】 根据运算法则和运算顺序,依次计算即可. 【详解】 解:(1)原式=2+9﹣2=9, (2)原式=(1+3﹣5) =﹣ , (3)原式=3﹣3﹣4 解析:(1)9;(2)-;(3)-3. 【解析】 【分析】 根据运算法则和运算顺序,依次计算即可. 【详解】 解:(1)原式=2+9﹣2=9, (2)原式=(1+3﹣5) =﹣ , (3)原式=3﹣3﹣4+1=﹣3. 【点睛】 本题考查了实数的运算,熟练掌握相关运算法则是解题关键. 十八、解答题 18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5. 【分析】 (1)直接开平方进行解答; (2)先移项,再开立方进行解答. (3)先移项,系数化为1,再开平方法进行解答 【详解】 解:( 解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5. 【分析】 (1)直接开平方进行解答; (2)先移项,再开立方进行解答. (3)先移项,系数化为1,再开平方法进行解答 【详解】 解:(1)开方得:x﹣1=2或x﹣1=﹣2, 解得:x=3或x=﹣1; (2)方程整理得:(2x+1)3=﹣64, 开立方得:2x+1=﹣4, 解得:x=﹣2.5; (3)方程整理得:x3=, 开立方得:x=1.5. 【点睛】 本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0. 十九、解答题 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180 解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180°(已知), ∴AD∥EF(同旁内角互补,两直线平行), ∴∠3=∠D(两直线平行,同位角相等), 又∵∠3=∠A(已知), ∴∠D=∠A(等量代换),, ∴AB∥CD(内错角相等,两直线平行), ∴∠B=∠C(两直线平行,内错角相等). 故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键. 二十、解答题 20.(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1). 【分析】 (1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案; (2)根据平行于x轴的直线上的点的纵坐标相 解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1). 【分析】 (1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案; (2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案; (3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案. 【详解】 (1)∵点P在y轴上, ∴, ∴, ∴ ∴P(0,). (2)∵PM//x轴, ∴, ∴,此时,, ∴P(-22,8) (3)∵若点P到x轴,y轴的距离相等, ∴, ∴或, 解得:或, 当时,﹣3a﹣4=,a+2=, ∴P(,), 当时,﹣3a﹣4=-1,a+2=1, ∴P(-1,1), 综上所述:P(,)或P(-1,1). 【点睛】 本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质. 二十一、解答题 21.(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本 解析:(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论 解析:(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案. 【详解】 解:(1)作PQ∥EF,如图: ∵, ∴, ∴,, ∵ ∴; (2)①; 理由如下:如图, 过作交于, ∵, ∴, ∴,, ∴; ②当点在延长线时,如备用图1: ∵PE∥AD∥BC, ∴∠EPC=,∠EPD=, ∴; 当在之间时,如备用图2: ∵PE∥AD∥BC, ∴∠EPD=,∠CPE=, ∴. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系. 二十四、解答题 24.(1)见解析;(2)见解析;(3)见解析;. 【分析】 (1)过点C作,得到,再根据,,得到,进而得到,最后证明; (2)先证明,再证明,得到,问题得证; (3)根据题意得到,根据(2)结论得到∠D 解析:(1)见解析;(2)见解析;(3)见解析;. 【分析】 (1)过点C作,得到,再根据,,得到,进而得到,最后证明; (2)先证明,再证明,得到,问题得证; (3)根据题意得到,根据(2)结论得到∠DEF=∠ECA=,进而得到,根据三角形内角和即可求解. 【详解】 解:(1)过点C作, , , , , , , , , ; (2)解:,, 又, , , , , , ; (3)如图三角形DEF即为所求作三角形. ∵, ∴, 由(2)得,DE∥AC, ∴∠DEF=∠ECA=, ∵, ∴∠ACB=, ∴ , ∴∠A=180°-=. 故答案为为:. 【点睛】 本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键. 二十五、解答题 25.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 质量 检测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文