人教版中学七年级下册数学期末质量监测卷及答案.doc
《人教版中学七年级下册数学期末质量监测卷及答案.doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末质量监测卷及答案.doc(23页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末质量监测卷及答案 一、选择题 1.的算术平方根是() A. B. C. D. 2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( ) A. B. C. D. 3.下列各点中,在第三象限的点是( ) A. B. C. D. 4.下列命题是假命题的是( ) A.对顶角相等 B.两条直线被第三条直线所截,同位角相等 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行 5.把一块直尺与一块含的直角三角板如图放置,若,则的度数为( ) A. B. C. D.124° 6.下列计算正确的是( ) A.=±2 B.(﹣3)0=0 C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3 7.如图,已知,平分,,则的度数是( ) A. B. C. D. 8.如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90°移动2个单位长度到达点P2;然后逆时针转向90°,移动3个单位长度到达点P3;然后逆时针转向90°,移动4个单位长度到达点P4;…,如此继续转向移动下去.设点Pn(xn,yn),n=1,2,3,…,则x1+x2+x3+…+x2021=( ) A.1 B.﹣1010 C.1011 D.2021 九、填空题 9.100的算术平方根是_____. 十、填空题 10.点A(-2,1)关于x轴对称的点的坐标是____________________. 十一、填空题 11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________. 十二、填空题 12.如图,∠ABC与∠DEF的边BC与DE相交于点G,且BA//DE,BC//EF,如果∠B=54°,那么∠E=__________. 十三、填空题 13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度. 十四、填空题 14.已知的小数部分是,的小数部分是,则________. 十五、填空题 15.若点P在轴上,则点P的坐标为____. 十六、填空题 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________. 十七、解答题 17.计算:(1);(2) 十八、解答题 18.求下列各式中的值: (1); (2); (3). 十九、解答题 19.如图,已知,,,求证:平分. 证明:, (已知) (垂直的定义) ( ) ( ) (两直线平行,同位角相等) 又(已知) ( ) 平分(角平分线的定义) 二十、解答题 20.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题: (1)在坐标系内描出点A、B、C的位置; (2)求出以A、B、C三点为顶点的三角形的面积; (3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由. 二十一、解答题 21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a. (1)求a的值; (2)若a的整数部分为m,小数部分为n,试求式子的值. 二十二、解答题 22.有一块面积为100cm2的正方形纸片. (1)该正方形纸片的边长为 cm(直接写出结果); (2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗? 二十三、解答题 23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 二十四、解答题 24.如图1,,E是、之间的一点. (1)判定,与之间的数量关系,并证明你的结论; (2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系; (3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小. 二十五、解答题 25.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据算术平方根的意义求解即可. 【详解】 解:16的算术平方根为4, 故选:A. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是解决问题的关键. 2.C 【分析】 根据平移变换的定义可得结论. 【详解】 解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的. 故选:C. 【点睛】 本题考查利用平移设计图案,解题的关键是理解平移变换 解析:C 【分析】 根据平移变换的定义可得结论. 【详解】 解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的. 故选:C. 【点睛】 本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.D 【分析】 应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标. 【详解】 解:∵第三象限的点的横坐标是负数,纵坐标也是负数, ∴结合选项符合第三象限的点是(-2,-4). 故选:D. 【点睛】 本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案. 【详解】 A、对顶角相等;真命题; B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等; C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题; D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题; 故选:B. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题. 5.D 【分析】 根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】 解:由题意可知AD//BC,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC, ∴∠2=180°-∠AEF=124°, 故选:D. 【点睛】 本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.C 【分析】 根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】 A.原式=﹣2,故A错误; B.原式=1,故B错误; C、(﹣2a2b)2=4a4b2,计算正确; D、原式=﹣a2,故D错误; 故选C. 【点睛】 本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.B 【分析】 利用平行线的性质,角平分线的定义即可解决问题. 【详解】 解:∵,,平分, ∴,, ∵, ∴, 故选:B. 【点睛】 本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.A 【分析】 根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】 解:根据平面坐标系结合各点横坐标得出:、、、、、、 解析:A 【分析】 根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】 解:根据平面坐标系结合各点横坐标得出:、、、、、、、的值分别为:1,1,,,3,3,,; , , , , , , , , , 故选:A. 【点睛】 此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律. 九、填空题 9.10 【分析】 根据算术平方根的定义进行计算,即可得到答案. 【详解】 解:∵102=100, ∴=10. 故答案为:10. 【点睛】 本题考查了算术平方根的定义,解题的关键是熟练掌握定义. 解析:10 【分析】 根据算术平方根的定义进行计算,即可得到答案. 【详解】 解:∵102=100, ∴=10. 故答案为:10. 【点睛】 本题考查了算术平方根的定义,解题的关键是熟练掌握定义. 十、填空题 10.(-2,-1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】 解:点(-2,1)关于x轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本 解析:(-2,-1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】 解:点(-2,1)关于x轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.∠1+∠2-∠A=90° 【分析】 先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系. 【详解】 ∵BD、C 解析:∠1+∠2-∠A=90° 【分析】 先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系. 【详解】 ∵BD、CE为△ABC的两条角平分线, ∴∠ABD=∠ABC,∠ACE=∠ACB, ∵∠1=∠ACE+∠A,∠2=∠ABD+∠A ∴∠1+∠2=∠ACE+∠A+∠ABD+∠A =∠ABC+∠ACB+∠A+∠A =(∠ABC+∠ACB+∠A)+∠A =90°+∠A 故答案为∠1+∠2-∠A=90°. 【点睛】 考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和. 十二、填空题 12.126° 【分析】 根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可. 【详解】 BA//DE,BC//EF, , ∠B=54°, , 故答案为:126°. 【点睛】 本题考查 解析:126° 【分析】 根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可. 【详解】 BA//DE,BC//EF, , ∠B=54°, , 故答案为:126°. 【点睛】 本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键. 十三、填空题 13.【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 解析:【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 十四、填空题 14.1 【分析】 根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果. 【详解】 解析:1 【分析】 根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果. 【详解】 解:∵4<7<9, ∴2<<3,∴-3<-<-2, ∴7<5+<8,2<5-<3, ∴5+的整数部分是7,5-的整数部分为2, ∴a=5+-7=-2,b=5--2=3-, ∴12019=1. 故答案为:1. 【点睛】 此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键. 十五、填空题 15.(4,0). 【分析】 根据x轴上点的纵坐标为0列方程求出m的值,再求解即可. 【详解】 ∵点P(m+3,m-1)在x轴上, ∴m-1=0, 解得m=1, 所以,m+3=1+3=4, 所以,点P的坐 解析:(4,0). 【分析】 根据x轴上点的纵坐标为0列方程求出m的值,再求解即可. 【详解】 ∵点P(m+3,m-1)在x轴上, ∴m-1=0, 解得m=1, 所以,m+3=1+3=4, 所以,点P的坐标为(4,0). 故答案为:(4,0). 【点睛】 本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键. 十六、填空题 16.【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环 解析: 【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2 ∵2021÷4=505…1, ∴A2021与A1是对应点,A2020与A0是对应点 ∴OA2020=505×2=1010,A1A2021=1010 ∴A2A2021=1010-1=1009 则△OA2A2019的面积是×1×1009=, 故答案为:. 【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 十七、解答题 17.(1)0 ;(2)2 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 解析:(1)0 ;(2) 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 ②原式== 十八、解答题 18.(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出 解析:(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出x的值. 【详解】 解:(1)x3=0.008, 则x=0.2; (2)x3-3= 则x3=3+ 故x3= 解得:x=; (3)(x-1)3=64 则x-1=4, 解得:x=5. 【点睛】 此题主要考查了立方根,正确把握立方根的定义是解题关键. 十九、解答题 19.见解析 【分析】 应用平行线的判定与性质进行求解即可得出答案. 【详解】 解:证明:∵DE⊥BC,AB⊥BC(已知), ∴∠DEC=∠ABC=90°(垂直的定义). ∴DE∥AB(同位角相等,两直线 解析:见解析 【分析】 应用平行线的判定与性质进行求解即可得出答案. 【详解】 解:证明:∵DE⊥BC,AB⊥BC(已知), ∴∠DEC=∠ABC=90°(垂直的定义). ∴DE∥AB(同位角相等,两直线平行). ∴∠2=∠3(两直线平行,内错角相等), ∠1=∠A(两直线平行,同位角相等). 又∵∠A=∠3(已知), ∴∠1=∠2(等量代换). ∴DE平分∠CDB(角平分线的定义). 【点睛】 本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键. 二十、解答题 20.(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3). 【分析】 (1)根据点的坐标,直接描点; (2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线 解析:(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3). 【分析】 (1)根据点的坐标,直接描点; (2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解; (3)因为AB=5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个. 【详解】 解:(1)描点如图; (2)依题意,得ABx轴,且AB=3﹣(﹣2)=5, ∴S△ABC=×5×2=5; (3)存在; ∵AB=5,S△ABP=10, ∴P点到AB的距离为4, 又点P在y轴上, ∴P点的坐标为(0,5)或(0,﹣3). 【点睛】 本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积. 二十一、解答题 21.(1);(2)1 【分析】 (1)分析图形得到大正方形的面积,从而得到边长a; (2)估算出a的范围,得到整数部分和小数部分,代入计算即可. 【详解】 解:(1)由题意可得: , ∵a>0, ∴; 解析:(1);(2)1 【分析】 (1)分析图形得到大正方形的面积,从而得到边长a; (2)估算出a的范围,得到整数部分和小数部分,代入计算即可. 【详解】 解:(1)由题意可得: , ∵a>0, ∴; (2)∵, ∴, ∴m=2,n=, ∴ = = = =1 【点睛】 本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围. 二十二、解答题 22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算 解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm; 故答案为:10; (2)∵长方形纸片的长宽之比为4:3, ∴设长方形纸片的长为4xcm,则宽为3xcm, 则4x•3x=90, ∴12x2=90, ∴x2=, 解得:x=或x=-(负值不符合题意,舍去), ∴长方形纸片的长为2cm, ∵5<<6, ∴10<2, ∴小丽不能用这块纸片裁出符合要求的纸片. 【点睛】 本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 二十三、解答题 23.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出 解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 二十四、解答题 24.(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2, 解析:(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED; (3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数. 【详解】 解:(1) 理由如下: 作,如图1, , . ,, ; (2)如图2,由(1)的结论得, 、的两条平分线交于点F, ,, , , ; (3)由(1)的结论得, 而射线沿翻折交于点G, , , , , . 【点睛】 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 二十五、解答题 25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 质量 监测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文