八年级数学下册期末试卷测试与练习(word解析版).doc
《八年级数学下册期末试卷测试与练习(word解析版).doc》由会员分享,可在线阅读,更多相关《八年级数学下册期末试卷测试与练习(word解析版).doc(27页珍藏版)》请在咨信网上搜索。
八年级数学下册期末试卷测试与练习(word解析版) 一、选择题 1.二次根式中x的值不能是( ) A.0 B.1 C.2 D.3 2.已知的三边长分别为,,,由下列条件不能判断是直角三角形的是( ) A. B. C. D. 3.如图,E是的边延长线上一点,连结交于点F,连结,,添加以下条件,不能判定四边形为平行四边形的是( ) A. B. C. D. 4.如果样本方差,那么这个样本的平均数和样本容量分别是( ) A.20,20 B.20,18 C.18,18 D.18,20 5.如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,连结AE,将AE绕点E顺时针旋转90°至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为( ) A.2 B. C. D.4 6.如图,菱形中,,则( ) A. B. C. D. 7.如图,的对角线、相交于点,交于点,若,的周长等于5,则的周长等于( ) A.16 B.12 C.10 D.8 8.如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED= ;③当0≤x≤5时,y=;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=.其中正确的有( ) A.2个 B.3个 C.4个 D.5个 二、填空题 9.已知|a+1|+=0,则ab=_____. 10.已知菱形的边长为2,一个内角为,那么该菱形的面积为__________. 11.如图,矩形ABCD的对角线AC与BD相交于点O,∠AOD=60°,AD=4,则AB=___. 12.如图:已知在矩形中,为对角线的交点,,于点,,则的长为___________. 13.在平面直角坐标系中,一次函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),则一次函数y=kx+b的解析式为 ____. 14.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形为菱形的是__(填序号). 15.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行____________米. 16.将纸片按如图的方式折叠成一个叠合矩形,若,,则的长为______. 三、解答题 17.计算: (1)﹣4; (2)(2﹣)2×(6+4). 18.笔直的河流一侧有一旅游地C,河边有两个漂流点A,B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC=5千米,CH=4千米,BH=3千米. (1)判断△BCH的形状,并说明理由; (2)求原路线AC的长. 19.如图所示,在的方格纸中,每个小正方形的边长均为1,线段的端点、均在小正方形的顶点上. (1)在图中画出以为边的菱形,菱形的面积为8; (2)在图中画出腰长为5的等腰三角形,且点在小正方形顶点上; (3)连接,请直接写出线段的长. 20.如图,在△ABC中,D,E分别是AB,BC的中点,连接DE并延长至点F,使得DE=EF,连接CF. (1)求证:四边形ADFC是平行四边形; (2)若∠A=∠B,连接CD,BF.求证:四边形BFCD是矩形. 21.先观察下列等式,再回答下列问题: ①; ②; ③. (1)请你根据上面三个等式提供的信息,猜想的结果,并验证; (2)请利用上述规律来计算(仿照上式写出过程); (3)请你按照上面各等式反映的规律,试写出一个用为正整数)表示的等式. 22.某电影院普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设看电影x次时,所需总费用为y元. (1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式; (2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标; (3)请根据函数图象,提出1条合算的消费建议. 23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF. (1)求证:四边形BFEP为菱形; (2)当E在AD边上移动时,折痕的端点P、Q也随着移动. ①当点Q与点C重合时, (如图2),求菱形BFEP的边长; ②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围. 24.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩积”,给出如下定义:“横底”a:任意两点横坐标差的最大值;“纵高”h:任意两点纵坐标差的最大值;则“矩积”S=ah.例如:三点坐标分别为A(1,﹣2),B(2,2),C(﹣1,﹣3),则“横底”a=3,“纵高”h=5,“矩积”S=ah=15.已知点D(﹣2,3),E(1,﹣1). (1)若点F在x轴上. ①当D,E,F三点的“矩积”为24,则点F的坐标为 ; ②直接写出D,E,F三点的“矩积”的最小值为 ; (2)若点F在直线y=mx+4上,使得D,E,F三点的“矩积”取到最小值,直接写出m的取值范围是 . 25.在平面直角坐标系xOy中,对于点P给出如下定义:点P到图形上各点的最短距离为,点P到图形上各点的最短距离为,若,就称点P是图形和图形的一个“等距点”. 已知点,. (1)在点,,中,______是点A和点O的“等距点”; (2)在点,,中,______是线段OA和OB的“等距点”; (3)点为x轴上一点,点P既是点A和点C的“等距点”,又是线段OA和OB的“等距点”. ①当时,是否存在满足条件的点P,如果存在请求出满足条件的点P的坐标,如果不存在请说明理由; ②若点P在内,请直接写出满足条件的m的取值范围. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式有意义的条件即可得出答案. 【详解】 解:二次根式中, ∴, 解得:, 故选项中符合条件的的值有, ∴不能为, 故选:D. 【点睛】 本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键. 2.A 解析:A 【分析】 根据三角形的内角和定理求出∠A的度数,即可判断选项A;根据三角形内角和定理求出∠C的度数,即可判断选项B;根据勾股定理的逆定理判定选项C和选项D即可. 【详解】 设△ABC中, ∠A的对边是a,∠B的对边是b,∠C的对边是c, A. ∠A = 2∠B = 3∠C, ∠A +∠B + ∠C= 180°, , 解得: , △ABC不是直角三角形,故本选项符合题意; B. ∠A = ∠C-∠B, ∠A +∠B = ∠C, ∠A+∠B + ∠C= 180°, 2∠C= 180°, ∠C= 90°, △ABC是直角三角形,故本选项不符合题意; C. , a- 5 = 0,b - 12 = 0, c - 13 = 0, a = 5,b= 12,c= 13, , ∠C= 90°, △ABC是直角三角形,故本选项不符合题意; D. , , 即, ∠B = 90°, △ABC是直角三角形,故本选项不符合题意. 故选:A. 【点睛】 本题考查了勾股定理的逆定理和三角形内角和定理,能熟记勾股定理的逆定理和三角形内角和定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形,三角形的内角和等于180°. 3.B 解析:B 【解析】 【分析】 根据平行四边形的判定定理逐项推理证明即可. 【详解】 解:∵ DE∥BC, ∴∠DEF=∠CBF, ∠DEF=∠CBF, 在△DEF与△CBF中, ∴△DEF≌△CBF(ASA), ∴DF=CF, ∵EF=BF, ∴四边形BCED为平行四边形,故A不符合题意; ∵AE∥BC, ∴∠AEB=∠CBF, ∵∠AEB=∠BCD, ∴∠CBF=∠BCD, ∴CF=BF, 同理,EF=DF, ∴不能判定四边形BCED为平行四边形; 故B符合题意; ∵四边形ABCD是平行四边形, ∴ .AD∥BC,AB∥CD, ∴DE∥CE,∠ABD=∠CDB, 又∵∠ABD=∠DCE, ∴∠DCE=∠CDB, ∴BD∥CE, ∴四边形BCED为平行四边形, 故C不符合题意; ∵AE∥BC, ∴∠DEC+∠BCE=∠EDB+∠DBC=180°, ∵∠AEC=∠CBD, ∴∠BDE=∠BCE, ∴四边形BCED为平行四边形, 故D不符合题意. 故选:B. 【点睛】 本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键. 4.D 解析:D 【解析】 【分析】 根据方差的计算公式,即可求得平均数和样本容量. 【详解】 解:,其中为平均数,为样本容量, 又∵ ∴,,即平均数为18,样本容量为20 故选D 【点睛】 此题考查了方差的计算公式,由方差公式求解平均数和样本容量,熟练掌握方差公式中各字母的意义是解题的关键. 5.B 解析:B 【分析】 已知EF⊥AE,当E点在线段BC上运动到两端时,正好是M点运动的两个端点,由此可以判断M点的运动轨迹是BC、CD中点的连线长. 【详解】 解:取BC、CD的中点G、H,连接GH,连接BD ∴GH为△BCD的中位线,即 ∵将AE绕点E顺时针旋转90°至EF, ∴EF⊥AE, 当E点在B处时,M点在BC的中点G处,当E点在C点处时,M点在CD中点处, ∴点M经过的路径长为GH的长, ∵正方形ABCD的边长为4, ∴ ∴, 故选B. 【点睛】 本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M点的运动轨迹. 6.D 解析:D 【解析】 【分析】 根据菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°. 【详解】 ∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°. 故选D. 【点睛】 本题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解答本题的关键. 7.A 解析:A 【解析】 【分析】 因为的周长是5,,所以可以推出,又根据中位线性质,可以得到,由此即可推导出平行四边形的周长. 【详解】 解:∵ 的周长是5,且 ∴ 又∵对角线、相交于点 ∴是的中点 ∵ ∴,点E为的中点 ∵四边形是平行四边形 ∴ ∴ ∴ 故选:A 【点睛】 本题考查平行四边形的性质,三角形中位线的性质,根据相关内容解题是关键. 8.B 解析:B 【分析】 根据图中相关信息即可判断出正确答案. 【详解】 解:图2知:当 时y恒为10, ∴当 时,点Q运动恰好到点B停止,且当 时点P必在EC上, 故①正确; ∵当 时点P必在EC上,且当 时,y逐渐减小, ∴当 时,点Q在点B处,点P在点C处,此时 设 则 在 中,由勾股定理得: 解得: 故②正确; 当 时,由 知点P在AE上,过点P作 如图: 故③正确; 当 时, 不是等腰三角形,故④不正确; 当时,点P在BC上,点Q和点B重合, 故⑤ 不正确; 故选B. 【点睛】 本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题. 二、填空题 9.-2 【解析】 【分析】 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解. 【详解】 解:由题意得,a+1=0,b﹣2=0, 解得a=﹣1,b=2, 所以,ab=﹣1×2=﹣2. 故答案为:﹣2. 【解答】 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0. 10.A 解析: 【解析】 【分析】 连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案. 【详解】 解:过点A作AM⊥BC于点M, ∵菱形的边长为2cm, ∴AB=BC=2cm, ∵有一个内角是60°, ∴∠ABC=60°, ∴∠BAM=30°, ∴(cm), ∴(cm), ∴此菱形的面积为:(cm2). 故答案为:. 【点睛】 本题主要考查了菱形的性质和30°直角三角形性质,解题的关键是熟练运用菱形的性质,本题属于基础题型. 11.B 解析: 【解析】 【分析】 由矩形对角线的性质得到,结合题意证明是等边三角形,解得BD的长,在中,理由勾股定理解题即可. 【详解】 解:矩形ABCD中,AC=BD且AO=OC,BO=DO 是等腰三角形 ∠AOD=60° 是等边三角形 AD=4 中 故答案为:. 【点睛】 本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键. 12. 【分析】 先证明是等边三角形,再利用等边三角形的性质求解再求解 再利用勾股定理即可得到答案. 【详解】 解: 矩形,为对角线的交点,, 是等边三角形, , 故答案为: 【点睛】 本题考查的是矩形的性质,等边三角形的判定与性质,含的直角三角形的性质,勾股定理的应用,掌握以上知识是解题的关键. 13.A 解析:y=2x+4 【分析】 根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式. 【详解】 解:∵函数y=kx+b的图象与直线y=2x平行, ∴k=2, 又∵函数y=2x+b的图象经过点A(1,6), ∴6=2+b, ∴b=4, ∴一次函数的解析式为y=2x+4, 故答案为y=2x+4. 【点睛】 本题考查了一次函数的性质,待定系数法求解析式,理解两条直线平行,解析式中的值相等是解题的关键. 14.A 解析:② 【解析】 【分析】 根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE是菱形. 【详解】 解:当BA=BC时,四边形ADCE是菱形. 理由:∵AE∥CD,CE∥AD, ∴四边形ADCE是平行四边形, ∵BA=BC, ∴∠BAC=∠BCA, ∵AD,CD分别平分∠BAC和∠ACB, ∴∠DAC=∠DCA, ∴DA=DC, ∴四边形ADCE是菱形. 【点睛】 本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质. 15.50 【分析】 根据总路程÷回家用的时间即可求解. 【详解】 解:小明回家用了15-5=10分钟, 总路程为500, 故小明回家的速度为:500÷10=50(米/分), 故答案为50. 【点睛】 本 解析:50 【分析】 根据总路程÷回家用的时间即可求解. 【详解】 解:小明回家用了15-5=10分钟, 总路程为500, 故小明回家的速度为:500÷10=50(米/分), 故答案为50. 【点睛】 本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚. 16.13 【分析】 根据折叠的性质可得,由已知条件,矩形的性质以及勾股定理即可求得,进而即可求得 【详解】 四边形是矩形,,,, , 四边形是平行四边形, , 折叠, ,, , , 故答案为:13 【 解析:13 【分析】 根据折叠的性质可得,由已知条件,矩形的性质以及勾股定理即可求得,进而即可求得 【详解】 四边形是矩形,,,, , 四边形是平行四边形, , 折叠, ,, , , 故答案为:13 【点睛】 本题考查了平行四边形的性质,折叠的性质,矩形的性质,勾股定理,证明是解题的关键. 三、解答题 17.(1)2;(2)4 【分析】 (1)根据二次根式的混合运算法则计算即可; (2)根据完全平方公式以及平方差公式计算即可. 【详解】 解:(1)原式=﹣4 =﹣4 =6﹣4 =2; (2)原式=(4﹣ 解析:(1)2;(2)4 【分析】 (1)根据二次根式的混合运算法则计算即可; (2)根据完全平方公式以及平方差公式计算即可. 【详解】 解:(1)原式=﹣4 =﹣4 =6﹣4 =2; (2)原式=(4﹣4+2)×(6+4) =(6﹣4)×(6+4) =36﹣32 =4. 【点睛】 本题考查了二次根式的混合运算,乘法公式的运用,熟练掌握相关运算法则是解本题的关键. 18.(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米. 【分析】 (1)根据勾股定理的逆定理解答即可; (2)根据勾股定理解答即可. 【详解】 解:(1)△HBC是直角三角形, 理由是:在△ 解析:(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米. 【分析】 (1)根据勾股定理的逆定理解答即可; (2)根据勾股定理解答即可. 【详解】 解:(1)△HBC是直角三角形, 理由是:在△CHB中, ∵CH2+BH2=42+32=25, BC2=25, ∴CH2+BH2=BC2, ∴△HBC是直角三角形且∠CHB=90°; (2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米, 在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4, 由勾股定理得:AC2=AH2+CH2, ∴x2=(x-3)2+42, 解这个方程,得x=, 答:原来的路线AC的长为千米. 【点睛】 本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理. 19.(1)见解析;(2)见解析;(3). 【解析】 【分析】 (1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可; (2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾 解析:(1)见解析;(2)见解析;(3). 【解析】 【分析】 (1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可; (2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾股定理找出E点即可; (3)利用勾股定理进行相应的计算即可得到答案. 【详解】 解:(1) 根据菱形的性质:菱形的四边都相等,菱形的面积为8,画出的图形如下图所示 (2)如图所示 ∴AB为等腰三角形ABE的底 ∴AE=BE=5 ∴下图即为所求 (3)如图所示,连接EC 则由题意得 【点睛】 本题主要考查了应用设计与作图,正确利用网格结合勾股定理是解题的关键. 20.(1)见解析;(2)见解析 【分析】 (1)根据三角形中位线定理可得,结合已知条件,根据一组对边平行且相等即可证明四边形ADFC是平行四边形; (2)先证明是平行四边形,进而根据等角对等边可得,由( 解析:(1)见解析;(2)见解析 【分析】 (1)根据三角形中位线定理可得,结合已知条件,根据一组对边平行且相等即可证明四边形ADFC是平行四边形; (2)先证明是平行四边形,进而根据等角对等边可得,由(1)可知,根据对角线相等的平行四边形是矩形即可得证. 【详解】 (1)∵D,E分别是AB,BC的中点, ∴DE//AC且, ∵, ∴DF//AC且, ∴四边形ADFC为平行四边形. (2)连接BF,CD,如图, 由(1)知四边形ADFC为平行四边形, ∴CF//AB且, D是AB的中点,所以, ∴CF//DB且, ∴四边形BFCD为平行四边形, ∵∠A=∠B, ∴AC=BC, 由(1)知,DF=AC, ∴DF=BC, 四边形BFCD为矩形. 【点睛】 本题考查了三角形中位线定理,平行四边形的性质与判定,矩形的判定定理,掌握以上性质与定理是解题的关键. 21.(1);理由见解析;(2);(3). 【解析】 【分析】 (1)根据已知算式得出规律,再根据求出的规律进行计算即可; (2)先变形已知式子,再根据得出的规律进行计算即可; (3)根据已知算式得出规律 解析:(1);理由见解析;(2);(3). 【解析】 【分析】 (1)根据已知算式得出规律,再根据求出的规律进行计算即可; (2)先变形已知式子,再根据得出的规律进行计算即可; (3)根据已知算式得出规律即可. 【详解】 解:(1), 理由是:; (2) ; (3)由(1)和(2)得:. 【点睛】 本题考查了二次根式的性质与化简,数字的变化类等知识点,能根据已知算式得出规律是解此题的关键. 22.(1)y=10x+150,y=20x;(2)A(0,150),B(15,300),C(45,600);(3)当0<x<15时,选择普通消费更划算;当x=15时,银卡,普通票总费用相同,均比金卡划算; 解析:(1)y=10x+150,y=20x;(2)A(0,150),B(15,300),C(45,600);(3)当0<x<15时,选择普通消费更划算;当x=15时,银卡,普通票总费用相同,均比金卡划算;当15<x<45时,银卡消费更划算;当x=45时,金卡,银卡的总费用相同,均比普通票划算;当x>45时,金卡消费更划算. 【分析】 (1)弄清题意,结合图象易知普通票为正比例函数图象,银卡为一次函数图象,依题意写出即可; (2)银卡函数关系式y=10x+150,令x=0时即可求出A点坐标,令银卡函数与普通卡函数关系式相等即可找到B点坐标,令银卡函数关系式y=600,即可找到C点坐标; (3)结合图象分当0<x<15时,x=15时,15<x<45时,x=45时,x>45时五段,依次分析出最合算的消费建议即可. 【详解】 解:(1)由题意得,选择银卡时,y与x之间的函数关系式为:y=10x+150; 选择普通票时,y与x之间的函数关系式为:y=20x; (2)由题意可得: 当y=10x+150,x=0时,y=150, 故A(0,150), 当10x+150=20x, 解得:x=15, 则y=300, 故B(15,300), 当y=10x+150=600时, 解得:x=45, 故C(45,600); (3)如图所示,由A、B、C三点坐标可得: 当0<x<15时,选择普通消费更划算; 当x=15时,银卡,普通票总费用相同,均比金卡划算; 当15<x<45时,银卡消费更划算; 当x=45时,金卡,银卡的总费用相同,均比普通票划算; 当x>45时,金卡消费更划算. 【点睛】 本题考查一次函数应用,重点掌握一次函数的基本性质熟练应用,能结合实际灵活运用是解题的关键. 23.(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=E 解析:(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论; (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案. 【详解】 解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ, ∴点B与点E关于PQ对称, ∴PB=PE,BF=EF,∠BPF=∠EPF, 又∵EF∥AB, ∴∠BPF=∠EFP, ∴∠EPF=∠EFP, ∴EP=EF, ∴BP=BF=EF=EP, ∴四边形BFEP为菱形; (2)①∵四边形ABCD是矩形, ∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°, ∵点B与点E关于PQ对称, ∴CE=BC=5cm, 在Rt△CDE中,DE==4cm, ∴AE=AD﹣DE=5cm-4cm=1cm; 在Rt△APE中,AE=1,AP=3-PB=3﹣PE, ∴,解得:EP=cm, ∴菱形BFEP的边长为cm; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm,BP=cm, , 当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm, , ∴菱形的面积范围:. 【点睛】 本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE是本题的关键. 24.(1)①(﹣5,0)或(4,0);②12;(2)或 【解析】 【分析】 (1)①已知F在x轴上,故“纵高”=4,根据“矩积”的定义,可知“横底”=6,应分三种情况进行分类讨论,当a<-2时、当-2≤ 解析:(1)①(﹣5,0)或(4,0);②12;(2)或 【解析】 【分析】 (1)①已知F在x轴上,故“纵高”=4,根据“矩积”的定义,可知“横底”=6,应分三种情况进行分类讨论,当a<-2时、当-2≤a≤1时、当a>1时; ②将F点的横坐标仍按照三类情况进行讨论,根据“矩积”的定义可求解; (2)使直线过点D(-2,3)或点H(1,3),求出该特殊位置时m的值,即可求解. 【详解】 解:(1)设点F坐标为(a,0), ①∵D,E,F三点的“矩积”为24,“纵高”=4, ∴“横底”=6, 当a<-2时,则“横底”=1-a=6, ∴a=-5; 当-2≤a≤1时,则“横底”=3≠6,不合题意舍去; 当a>1时,则“横底”=a-(-2)=6; ∴a=4, ∴点F(﹣5,0)或(4,0), 故答案为:(﹣5,0)或(4,0); ②当a<-2时,则1-a>3, ∴S=4(1-a)>12, 当﹣2≤a≤1时,S=34=12, 当a>1时,则a-(-2)>3, ∴S=4[a-(-2)]>12, ∴D,E,F三点的“矩积”的最小值为12, 故答案为:12; (2)由(1)可知:设点F(a,0),当﹣2≤a≤1时,D,E,F三点的“矩积”能取到最小值,如图下图所示,直线y=mx+4恒过点(0,4),使该直线过点D(-2,3)或点H(1,3),当F在点D或点H时,D,E,F三点的“矩积”的最小值为12, 当直线y=mx+4过点D(-2,3)时, ∴3=-2m+4, ∴解得:, 当直线y=mx+4过点H(1,3)时, ∴3=m+4, ∴m=-1, ∴当m≥或m≤-1时,D,E,F三点的“矩积”能取到最小值. 【点睛】 本题主要考察了一次函数的几何应用,提出了“矩积”这个全新的概念,解题的关键在于通过题目的描述,知道“矩积”的定义,同时要注意分类讨论. 25.(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);② 【分析】 (1)根据“等距点”的定义,即可求解; (2)根据“等距点”的定义,即可求解; (3)①根据点P是线段OA和OB的“等距点 解析:(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);② 【分析】 (1)根据“等距点”的定义,即可求解; (2)根据“等距点”的定义,即可求解; (3)①根据点P是线段OA和OB的“等距点”,可设点P(x,x)且x>0,再由点P是点A和点C的“等距点”,可得 ,从而得到 ,即可求解; ②根据点P是线段OA和OB的“等距点”, 点P在∠AOB的角平分线上,可设点P(a,a)且a>0,根据OA=OB,可得OP平分线段AB,再由点P在内,可得 ,根据点P是点A和点C的“等距点”,可得 ,从而得到,整理得到,即可求解. 【详解】 解:(1)根据题意得: , , , , , , ∴ , ∴点是点A和点O的“等距点”; (2)根据题意得:线段OA在x轴上,线段OB在y轴上, ∴点到线段OA的距离为1,到线段OB的距离为2, 点到线段OA的距离为2,到线段OB的距离为2, 点到线段OA的距离为6,到线段OB的距离为3, ∴点到线段OA的距离和到线段OB的距离相等, ∴点是线段OA和OB的“等距点”; (3)①存在,点P的坐标为(7,7),理由如下: ∵点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上, ∴可设点P(x,x)且x>0, ∵点P是点A和点C的“等距点”, ∴ , ∵点C(8,0),, ∴ , 解得: , ∴点P的坐标为(7,7); ②如图, ∵点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上, ∴点P在∠AOB的角平分线上, 可设点P(a,a)且a>0, ∵,. ∴OA=OB=6, ∴OP平分线段AB, ∵点P在内, ∴当点P位于AB上时, 此时点P为AB的中点, ∴此时点P的坐标为 ,即 , ∴ , ∵点P是点A和点C的“等距点”, ∴ , ∵点,, ∴, 整理得: , 当 时,点C(6,0), 此时点C、A重合,则a=6(不合题意,舍去), 当时, , ∴,解得: , 即若点P在内,满足条件的m的取值范围为. 【点睛】 本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 期末试卷 测试 练习 word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文