2022年人教版七7年级下册数学期末质量检测试卷及解析.doc
《2022年人教版七7年级下册数学期末质量检测试卷及解析.doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末质量检测试卷及解析.doc(24页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末质量检测试卷及解析 一、选择题 1.下列图形中,与是同位角的是( ) A. B. C. D. 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( ) A. B. C. D. 3.点在平面直角坐标系中所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段的延长线与射线是同一条射线.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( ) A.30° B.40° C.60° D.70° 6.下列说法中正确的是( ) ①1的平方根是1; ②5是25的算术平方根; ③(﹣4)2的平方根是﹣4; ④(﹣4)3的立方根是﹣4; ⑤0.01是0.1的一个平方根. A.①④ B.②④ C.②③ D.②⑤ 7.如图,,交于点,平分,,则的度数为( ). A.60° B.55° C.50° D.45° 8.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A100的坐标为( ) A.(101,100) B.(150,51) C.(150,50) D.(100,53) 九、填空题 9.的算术平方根是__________. 十、填空题 10.若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=______ 十一、填空题 11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____. 十二、填空题 12.如图,,设,那么,,的关系式______. 十三、填空题 13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________. 十四、填空题 14.用表示一种运算,它的含义是:,如果,那么 __________. 十五、填空题 15.如果点P(m+3,m﹣2)在x轴上,那么m=_____. 十六、填空题 16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______. 十七、解答题 17.计算: (1)利用平方根意义求x值: (2) 十八、解答题 18.求下列各式中x的值. (1)x2﹣81=0; (2)2x2﹣16=0; (3)(x﹣2)3=﹣27. 十九、解答题 19.补全下面的证明过程和理由: 如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD. 求证:∠A=∠F. 证明:∵∠C=∠COA,∠D=∠BOD,( ) 又∵∠COA=∠BOD,( ) ∴∠C= .( ) ∴AC∥DF( ). ∴∠A= ( ). ∵EF∥AB, ∴∠F= ( ). ∴∠A=∠F( ). 二十、解答题 20.如图,三角形ABC在平面直角坐标系中, (1)请写出三角形ABC各点的坐标; (2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形; (3)求出三角形ABC的面积. 二十一、解答题 21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分; (1)求a+b+c的值; (2)求3a﹣b+c的平方根. 二十二、解答题 22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二十三、解答题 23.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 二十四、解答题 24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 二十五、解答题 25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 【参考答案】 一、选择题 1.B 解析:B 【分析】 两条线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角. 【详解】 解:根据同位角的定义可知B选项中∠1与∠2在直线的同侧,并且在第三条直线(截线)的同旁,故是同位角. 故选:B. 【点睛】 本题主要考查同位角的定义,准确理解同位角的定义,是解本题的关键. 2.C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是 解析:C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是轴对称图形,故选项B不合题意; C.选项的图案可以通过平移得到.故选项C符合题意; D.是轴对称图形,故选项D不符合题意. 故选:C. 【点睛】 本题考查了图形的平移,掌握平移的定义及性质是解题的关键. 3.B 【分析】 根据坐标的特点即可求解. 【详解】 点在平面直角坐标系中所在的象限是第二象限 故选B. 【点睛】 此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.B 【分析】 利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案. 【详解】 解:①连接两点的线段长度叫做两点间的距离,故此选项错误. ②经过两点有一条直线,并且只有一条直线,故此选项正确. ③两点之间,线段最短,故此选项正确. ④线段的延长线是以B为端点延长出去的延长线部分,与射线不是同一条射线故此选项错误. 综上,②③正确. 故选:B. 【点睛】 本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义. 5.A 【分析】 过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得. 【详解】 解:如图,过点作, , , , , , , , , 故选:A. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 6.B 【分析】 根据平方根,算术平方根,立方根的概念进行分析,从而作出判断. 【详解】 解:1的平方根是±1,故说法①错误; 5是25的算术平方根,故说法②正确; (-4)2的平方根是±4,故说法③错误; (-4)3的立方根是-4,故说法④正确; 0.1是0.01的一个平方根,故说法⑤错误; 综上,②④正确, 故选:B. 【点睛】 本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.C 【分析】 根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得. 【详解】 , , 又∵ , 平分, , 故选:C. 【点睛】 本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点. 8.B 【分析】 观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1 解析:B 【分析】 观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A100(150,51). 【详解】 解:观察图形可得,奇数点:A1(2,0),A3(5,1),A5(8,2),…,A2n-1(3n-1,n-1), 偶数点:A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1), ∵100是偶数,且100=2n, ∴n=50, ∴A100(150,51), 故选:B. 【点睛】 本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键. 九、填空题 9.【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b 解析:1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b)2017=(4-3)2017=1. 故答案为:1. 【点睛】 本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数. 十一、填空题 11.6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌ 解析:6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌△ADH,△DEF≌△DGH, 设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6. ∴△EDF的面积为6. 十二、填空题 12.【分析】 过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解; 【详解】 如图,过作,过作, ∴, ∴,,, ∵, ∴, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查了平 解析: 【分析】 过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解; 【详解】 如图,过作,过作, ∴, ∴,,, ∵, ∴, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键; 十三、填空题 13.68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, 解析:68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, ∴, ∵,, ∴(两直线平行,内错角相等), ∴, ∴, 又∵, ∴, ∴. 综上,. 故答案为:68°;112°. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 十四、填空题 14.【分析】 按照新定义的运算法先求出x,然后再进行计算即可. 【详解】 解:由 解得:x=8 故答案为. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的 解析: 【分析】 按照新定义的运算法先求出x,然后再进行计算即可. 【详解】 解:由 解得:x=8 故答案为. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的值. 十五、填空题 15.【分析】 根据x轴上的点的纵坐标等于0列式计算即可得解. 【详解】 ∵点P(m+3,m﹣2)在x轴上, ∴m﹣2=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记x轴上的点的纵 解析:【分析】 根据x轴上的点的纵坐标等于0列式计算即可得解. 【详解】 ∵点P(m+3,m﹣2)在x轴上, ∴m﹣2=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键. 十六、填空题 16.(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,- 解析:(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…, 可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4 ∵2021÷8=252…5, ∴的坐标为(252×4+2,-1), ∴点的坐标是是(1010,-1). 故答案为:(1010,-1). 【点睛】 本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般. 十七、解答题 17.(1)或 (2) 【分析】 (1)由平方根的定义可得答案, (2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案. 【详解】 解:(1) , 是的平方根, 或 (2) 【点睛 解析:(1)或 (2) 【分析】 (1)由平方根的定义可得答案, (2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案. 【详解】 解:(1) , 是的平方根, 或 (2) 【点睛】 本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键. 十八、解答题 18.(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1) 解析:(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1)x2﹣81=0, x2=81, x=±9; (2)2x2﹣16=0, 2x2=16, x2=8, ; (3)(x﹣2)3=﹣27, x﹣2=﹣3, x=2﹣3, x=﹣1. 【点睛】 本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键. 十九、解答题 19.见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 解析:见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 又∵∠COA=∠BOD(对顶角相等), ∴∠C=∠D(等量代换). ∴AC∥DF(内错角相等,两直线平行). ∴∠A=∠ABD(两直线平行,内错角相等). ∵EF∥AB, ∴∠F=∠ABD(两直线平行,内错角相等). ∴∠A=∠F(等量代换). 故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换. 【点睛】 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 二十、解答题 20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7 【分析】 (1)利用点的坐标的表示方法分别写出点A、B、C的坐标; 解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7 【分析】 (1)利用点的坐标的表示方法分别写出点A、B、C的坐标; (2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1; (3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积. 【详解】 解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2); (2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度, 平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4), 平移后的△A1B1C1如下图所示: ; (3). 【点睛】 本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可 解析:(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可解答. 【详解】 解:(1)∵某正数的两个平方根分别是3a-14和a+2, ∴(3a-14)+(a+2)=0, ∴a=3, 又∵b+11的立方根为-3, ∴b+11=(-3)3=-27, ∴b=-38, 又∵, ∴, 又∵c是的整数部分, ∴c=2; ∴a+b+c=3+(-38)+2=-33; (2)当a=3,b=-38,c=2时, 3a-b+c=3×3-(-38)+2=49, ∴3a-b+c的平方根是±7. 【点睛】 本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二十三、解答题 23.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G 解析:(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 二十四、解答题 24.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 二十五、解答题 25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180° 解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案; (2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°, 得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案; (3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解. 【详解】 解:(1)证明:∵BE平分∠ABD, ∴∠EBD=∠ABD, ∵DE平分∠BDC, ∴∠EDB=∠BDC, ∴∠EBD+∠EDB=(∠ABD+∠BDC), ∵AB∥CD, ∴∠ABD+∠BDC=180°, ∴∠EBD+∠EDB=90°, ∴∠BED=180°﹣(∠EBD+∠EDB)=90°. (2)解:如图2, 由(1)知:∠EBD+∠EDB=90°, 又∵∠ABD+∠BDC=180°, ∴∠ABE+∠EDC=90°, 即∠ABE+α+∠FDC=90°, ∵BG平分∠ABE,DG平分∠CDF, ∴∠ABE=2∠ABG,∠CDF=2∠CDG, ∴2∠ABG+2∠CDG=90°﹣α, 过点G作GP∥AB, ∵AB∥CD, ∴GP∥AB∥CD ∴∠ABG=∠BGP,∠PGD=∠CDG, ∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=; (3)如图,过点F、G分别作FN∥AB、GM∥AB, ∵AB∥CD, ∴AB∥GM∥FN∥CD, ∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM, ∴∠BFD=∠BFN+∠DFN=∠3+∠5, ∠BGD=∠BGM+∠DGM=∠4+∠6, ∵BG平分∠FBP,DG平分∠FDQ, ∴∠4=∠FBP=(180°﹣∠3), ∠6=∠FDQ=(180°﹣∠5), ∴∠BFD+∠BGD=∠3+∠5+∠4+∠6, =∠3+∠5+(180°﹣∠3)+(180°﹣∠5), =180°+(∠3+∠5), =180°+∠BFD, 整理得:2∠BGD+∠BFD=360°. 【点睛】 本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末 质量 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文