人教版八年级期末试卷达标训练题(Word版含答案).doc
《人教版八年级期末试卷达标训练题(Word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版八年级期末试卷达标训练题(Word版含答案).doc(30页珍藏版)》请在咨信网上搜索。
人教版八年级期末试卷达标训练题(Word版含答案) 一、选择题 1.化简的结果是( ) A. B. C.-4 D.4 2.在ABC中,三边长分别为a,b,c,且,,则ABC是( ) A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形 3.四边形BCDE中,对角线BD、CE相交于点F,下列条件不能判定四边形BCDE是平行四边形的是( ) A.BC∥ED,BE=CD B.BF=DF,CF=EF C.BC∥ED,BE∥CD D.BC=ED.BE=CD 4.某次数学趣味竞赛共有组题目,某班得分情况如下表.全班名学生成绩的众数是( ) 人数 成绩(分) A. B. C. D. 5.如图,菱形的边长为2,,点是边的中点,点是对角线上一动点,则周长的最小值是( ) A. B. C. D. 6.如图,在中,,,平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点O恰好重合,有如下五个结论:①;②;③是等边三角形;④;⑤.则上列说法中正确的个数是( ) A.2 B.3 C.4 D.5 7.如图,矩形ABCD中,AB=7,BC=6,点F是BC的中点,点E在AB上,且AE=2,连接DF,CE,点G、H分别是DF,CE的中点,连接GH,则线段GH的长为( ) A.2 B. C.. D. 8.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示给出以下结论:①;②;③.其中正确的是( ) A.②③ B.①②③ C.①② D.①③ 二、填空题 9.若代数式有意义,则的取值范围__________. 10.已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是_______. 11.如图,矩形ABCD的对角线AC与BD相交于点O,∠AOD=60°,AD=4,则AB=___. 12.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOD=120°,AC=4,则△ABO的周长为_____________. 13.如图,一次函数的图象与坐标轴的交点坐标分别为A(0,2),B(-3,0),下列说法:①随的增大而减小;②;③关于的方程的解为;④关于的不等式的解集.其中说法正确的有_____________. 14.如图,请你添加一个适当的条件___,使平行四边形ABCD成为菱形. 15.如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止.图2是的面积与时间的图像,则b的值是_________. 16.如图所示,四边形是长方形,把沿折叠到,与交于点E,若,则的长为________. 三、解答题 17.计算: (1)﹣+; (2)(3﹣)(+2). 18.一架长为米的梯子,顶端靠在墙上,梯子底端到墙的距离米. (1)求的长; (2)如图梯子的顶端沿墙向下滑动米,问梯子的底端向外移动了多少米? 19.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形或四边形.(绘图要求:①所绘图形不得超出正方形网格;②必须用直尺和中性笔绘图,确保所绘图形的顶点必须在格点上) (1)在图①中,画一个直角三角形,使它的三边长都是有理数; (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数; (4)在图④中,画一个正方形,使它的面积为10. 20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE. (1)求证:四边形ADCE是菱形; (2)若∠B=60°,BC=6,求四边形ADCE的面积. 21.阅读下面的材料,解答后面提出的问题: 黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+)(2-)=1,(+)(-)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:==,==7+4.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题: (1)4+的有理化因式是 ,将分母有理化得 ; (2)已知x=,y=,则= ; (3)已知实数x,y满足(x+)(y+)-2017=0,则x= ,y= . 22.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过160元的按原价计费,超过160元后的部分打7折.设(单位:元)表示标价总额,(单位:元)表示应支付金额. (1)分别就两家书店的优惠方式,写出、关于的函数解析式;. (2)“世界读书日”这一天,当购书费用超过160元时如何选择这两家书店去购书更省钱? 23.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F. (1)如图,当BE=CE时,求旋转角的度数; (2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数; (3)联结AF,求证:. 24.如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0). (1)求直线AB的函数表达式; (2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标; (3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由. 25.如图,四边形为正方形.在边上取一点,连接,使. (1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则; (2)在前面的条件下,取中点,过点的直线分别交边、于点、. ①当时,求证:; ②当时,延长,交于点,猜想与的数量关系,并说明理由. 26.如图,在等腰中,,,点D为边中点,点E在线段上,,过点C作于F,交于点G. (1)求的大小(用含的式子表示) (2)①求证:; ②写出______的值. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据完全平方公式因式分解,再利用二次根式的性质化简解题即可. 【详解】 解:由题意得, 故选:D. 【点睛】 本题考查完全平方公式因式分解、二次根式的化简、二次根式由意义的条件等知识,是重要考点,掌握相关知识是解题关键. 2.A 解析:A 【分析】 根据平方差公式,可得 ,即可求解. 【详解】 解:∵,, ∴ , 即 , ∴ , ∴ABC是直角三角形. 故选: A. 【点睛】 本题主要考查了勾股定理的逆定理,平方差公式,熟练掌握若一个三角形的两边的平方和等于第三边的平方是解题的关键. 3.A 解析:A 【解析】 【分析】 根据平行四边形的判定定理分别进行分析即可. 【详解】 解:A、不能判定四边形ABCD是平行四边形,故此选项符合题意; B、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; C、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; D、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; 故选;A. 【点睛】 本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键. 4.B 解析:B 【解析】 【分析】 根据众数的定义进行解答即可. 【详解】 解:70出现了13次,出现的次数最多,则众数是70; 故选:B. 【点睛】 此题考查了众数,掌握众数的定义:众数是一组数据中出现次数最多的数是解题的关键. 5.A 解析:A 【分析】 连接BQ,BD,当P,Q,B在同一直线上时,DQ+PQ的最小值等于线段BP的长,依据勾股定理求得BP的长,即可得出DQ+PQ的最小值,进而得出△DPQ周长的最小值. 【详解】 解:如图所示,连接BQ,BD, ∵点Q是菱形对角线AC上一动点, ∴BQ=DQ, ∴DQ+PQ=BQ+PQ, 当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长, ∵四边形ABCD是菱形,∠BAD=60°, ∴△BAD是等边三角形, 又∵P是AD的中点, ∴BP⊥AD,AP=DP=1, ∴Rt△ABP中,∠ABP=30°, ∴AP=AB=1, ∴BP=, ∴DQ+PQ最小值为, 又∵DP=1, ∴△DPQ周长的最小值是, 故选:A. 【点睛】 本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点. 6.B 解析:B 【解析】 【分析】 利用三线合一可判断①;由折叠的性质可判断④;根据垂直平分线的性质得到OA=OB,从而计算出∠ACB=∠EOF=63°,可判断③;证明△OAB≌△OAC,得到OA=OB=OC,从而推出∠OEF=54°,可判断⑤;而题中条件无法得出OD=OE,可判断②. 【详解】 解:如图,连接OB,OC, ∵AB=AC,OA平分∠BAC,∠BAC=54°, ∴AO⊥BC(三线合一),故①正确; ∠BAO=∠CAO=∠BAC=×54°=27°, ∠ABC=∠ACB=×(180°-∠BAC)=×126°=63°, ∵DO是AB的垂直平分线, ∴OA=OB,即∠OAB=∠OBA=27°, 则∠OBC=∠ABC-∠OBA=63°-27°=36°≠∠OBA, 由折叠可知:△OEF≌△CEF,故④正确; 即∠ACB=∠EOF=63°≠60°,OE=CE,∠OEF=∠CEF, ∴△OEF不是等边三角形,故③错误; 在△OAB和△OAC中, , ∴△OAB≌△OAC(SAS), ∴OB=OC, 又OB=OA, ∴OA=OB=OC, ∠OCB=∠OBC=36°, 又OE=CE, ∴∠OCB=∠EOC=36°, ∴∠OEC=180°-(∠OCB+∠EOC)=180°-72°=108°, 又∠OEC=∠OEF+∠CEF ∠OEF=108°÷2=54°,故⑤正确; 而题中条件无法得出OD=OE,故②错误; ∴正确的结论为①④⑤共3个, 故选B. 【点睛】 本题考查了折叠的性质,线段垂直平分线的性质,等腰三角形三线合一的性质,等边对等角的性质,以及全等三角形的判定和性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键. 7.D 解析:D 【解析】 【分析】 取中点,连接,过作于,根据已知条件以及三角形中位线定理,求得,进而勾股定理解决问题. 【详解】 如图,取中点,连接,过作于, 四边形是矩形, ,, 四边形是平行四边形, 点F是BC的中点,AB=7,BC=6, , , 四边形是矩形, , 点G、H分别是DF,CE的中点, 交于点,, ,, 点H是CE的中点,点F是BC的中点, , , 在中 , 故选D 【点睛】 本题考查了矩形的性质,三角形中位线定理,勾股定理,添加辅助,构造是解题的关键. 8.B 解析:B 【分析】 易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s跑完总路程400可得乙的速度,进而求得80s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c的值. 【详解】 由函数图象可知, 甲的速度为(米/秒),乙的速度为(米/秒), (秒),,故①正确; (米)故②正确; (秒)故③正确; 正确的是①②③.故选B. 【点睛】 本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键. 二、填空题 9. 【解析】 【分析】 由代数式有意义可得且 从而可得答案. 【详解】 解: 代数式有意义, 且 且 所以:> 故答案为:> 【点睛】 本题考查的是二次根式有意义的条件,分式有意义的条件,利用二次根式与分式有意义列不等式组是解题的关键. 10.24 【解析】 【详解】 解:根据菱形的面积等于菱形两条对角线乘积的一半可得菱形面积为 故答案为:24. 11.B 解析: 【解析】 【分析】 由矩形对角线的性质得到,结合题意证明是等边三角形,解得BD的长,在中,理由勾股定理解题即可. 【详解】 解:矩形ABCD中,AC=BD且AO=OC,BO=DO 是等腰三角形 ∠AOD=60° 是等边三角形 AD=4 中 故答案为:. 【点睛】 本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键. 12.A 解析:6 【分析】 根据矩形的性质,得到为等边三角形,边长为2,即可求解. 【详解】 解:∵四边形ABCD为矩形,AC=4 ∴,, ∴ 又∵∠AOD=120° ∴ ∴为等边三角形 ∴的周长为 故答案为6. 【点睛】 此题主要考查了矩形的性质,熟练掌握矩形的性质是解题的关键. 13.④ 【分析】 根据一次函数的性质,一次函数与一元一次方程的关系对各个说法分析判断即可得解. 【详解】 解:把,,代入中,可得:, 解得:,所以解析式为:; ①随的增大而增大,故①说法错误; ②,故②说法错误; ③关于的方程的解为,故③说法错误; ④关于的不等式的解集,故④说法正确. 故答案是:④. 【点睛】 本题主要考查了一次函数的性质,以及一次函数与一元一次方程,解题的关键是:利用数形结合求解. 14. 【分析】 根据对角线互相垂直的平行四边形是菱形解题. 【详解】 解:由对角线互相垂直的平行四边形是菱形得,应添加条件: 故答案为:. 【点睛】 本题考查菱形的判定,是重要考点,掌握相关知识是解题关键. 15.【分析】 根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值. 【详解】 解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上, ∴, ∵, ∴解得 解析: 【分析】 根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值. 【详解】 解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上, ∴, ∵, ∴解得, 又∵,即 ∴, 故答案为:. 【点睛】 本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解. 16.【分析】 根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则 解析: 【分析】 根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE. 【详解】 解:∵四边形ABCD为矩形, ∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°. ∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E, ∴∠DAC=∠D′AC, ∵AD∥BC, ∴∠DAC=∠ACB, ∴∠D′AC=∠ACB, ∴AE=EC. 设BE=x,则EC=4﹣x,AE=4﹣x, 在Rt△ABE中,∵AB2+BE2=AE2, ∴32+x2=(4﹣x)2,解得x=, 即BE的长为. 故答案为:. 【点睛】 本题考查了折叠的性质、矩形的性质和勾股定理,解题关键是设未知数,表示线段长,利用勾股定理列方程. 三、解答题 17.(1) ;(2) 【分析】 (1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可; (2)先变形为原式= ,然后利用平方差公式计算; 【详解】 解:(1)﹣+, , ; (2)(3 解析:(1) ;(2) 【分析】 (1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可; (2)先变形为原式= ,然后利用平方差公式计算; 【详解】 解:(1)﹣+, , ; (2)(3﹣)(+2), , , . 【点睛】 本题考查了平方差公式、二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 18.(1)8米;(2)米 【分析】 (1)直接利用勾股定理得出BC的长; (2)在△CED中,再利用勾股定理计算出CE的长,进而可得AE的长. 【详解】 解:(1)一架长米的梯子,顶端靠在墙上,梯子底端 解析:(1)8米;(2)米 【分析】 (1)直接利用勾股定理得出BC的长; (2)在△CED中,再利用勾股定理计算出CE的长,进而可得AE的长. 【详解】 解:(1)一架长米的梯子,顶端靠在墙上,梯子底端到墙的距离米,∠C=90°, . 答:的长为米. (2),, , 又∠C=90°, , . 答:梯子的底端向外移动了米. 【点睛】 此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键. 19.(1)见解析;(2)见解析;(3)见解析;(4)见解析; 【解析】 【分析】 根据勾股定理即可得. 【详解】 解:(1)如图①所示,三边分别为:3,4,5; (2)如图②所示,三边分别为:,,2或 解析:(1)见解析;(2)见解析;(3)见解析;(4)见解析; 【解析】 【分析】 根据勾股定理即可得. 【详解】 解:(1)如图①所示,三边分别为:3,4,5; (2)如图②所示,三边分别为:,,2或,,4 ; (3如图③所示,三边分别为:,,或,,或,,; (4)如图④所示,正方形的边长为:,则面积:()2=10. 【点睛】 本题考查了勾股定理,解题的关键是掌握勾股定理. 20.(1)见解析;(2) 【分析】 (1)先根据已知条件,证明四边形DBCE是平行四边形,可得EC∥AB,且EC=DB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相 解析:(1)见解析;(2) 【分析】 (1)先根据已知条件,证明四边形DBCE是平行四边形,可得EC∥AB,且EC=DB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相等的平行四边形是菱形即可得证; (2)根据已知条件可得是等边三角形,进而求得,根据,进而根据菱形的性质求得面积. 【详解】 (1)证明:∵DE∥BC,EC∥AB, ∴四边形DBCE是平行四边形. ∴EC∥AB,且EC=DB. 在Rt△ABC中,CD为AB边上的中线, ∴AD=DB=CD. ∴EC=AD. 四边形ADCE是平行四边形 ∴四边形ADCE是菱形. (2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6, 是等边三角形 ∴AD=DB=CD=6. ∴AB=12,由勾股定理得. ∵四边形DBCE是平行四边形, ∴DE=BC=6. ∴菱形. 【点睛】 本题考查了菱形的性质与判定,直角三角形斜边上的中线等于斜边的一半,勾股定理,等边三角形的性质与判定,掌握以上知识是解题的关键. 21.(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ 解析:(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ ∴ ∴ , 整理得: ∴ ,x=y 将x=y代入可得:, .故答案为,. 点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键. 22.(1);当x≤160, y乙=x, 当x>160时, ; (2)当时,选择甲书店购书更省钱;当时,选择乙书店购书更省钱.答案见解析. 【分析】 (1)根据公式:应支付的金额=标价总额×折扣,即可 解析:(1);当x≤160, y乙=x, 当x>160时, ; (2)当时,选择甲书店购书更省钱;当时,选择乙书店购书更省钱.答案见解析. 【分析】 (1)根据公式:应支付的金额=标价总额×折扣,即可得函数关系式; (2)求出两书店所需费用相同时的书本标价,从而可以判断哪家书店省钱. 【详解】 解:(1), 当x≤160, y乙=x, 当x>160时,y乙=160+0.7(x-160)=0.7x+48 即 (2)解:∵ 当时,即,解得 当时,即0.8x=0.7x+48,解得; 当时,即0.8x<0.7x+48,解得 所以当,去乙书店购书更省钱; 当,两家书店购书省钱一样; 当,去甲书店购书更省钱. 【点睛】 本题考查了一次函数在实际生活中的应用,关键是正确找出题中的等量关系,分情况讨论即可. 23.(1)30°;(2)不变;45°;(3)见解析 【分析】 (1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°. (2)因为△CED是等腰三角形,再利用三角形的内角 解析:(1)30°;(2)不变;45°;(3)见解析 【分析】 (1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°. (2)因为△CED是等腰三角形,再利用三角形的内角和即可求∠BEF=. (3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得△ABG≌△ADH.从而求得矩形AGFH是正方形,根据正方形的性质证得△AHD≌△DIC,从而得出结论. 【详解】 (1)证明:在正方形ABCD中, BC=CD.由旋转知,CE=CD, 又∵BE=CE, ∴BE=CE=BC, ∴△BEC是等边三角形, ∴∠BCE=60°. 又∵∠BCD=90°, ∴=∠DCE=30°. (2)∠BEF的度数不发生变化. 在△CED中,CE=CD, ∴∠CED=∠CDE=, 在△CEB中,CE=CB,∠BCE=, ∴∠CEB=∠CBE=, ∴∠BEF=. (3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I 易知四边形AGFH是平行四边形, 又∵BF⊥DF, ∴平行四边形AGFH是矩形. ∵∠BAD=∠BGF=90°, ∠BPF=∠APD , ∴∠ABG=∠ADH. 又∵∠AGB=∠AHD=90°,AB=AD, ∴△ABG≌△ADH. ∴AG=AH , ∴矩形AGFH是正方形. ∴∠AFH=∠FAH=45°, ∴AH=AF ∵∠DAH+∠ADH=∠CDI+∠ADH=90° ∴∠DAH=∠CDI 又∵∠AHD=∠DIC=90°,AD=DC, ∴△AHD≌△DIC ∴AH=DI, ∵DE=2DI, ∴DE=2AH=AF 【点晴】 本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 24.(1);(2);(3)或或 【解析】 【分析】 (1)直接利用待定系数法,即可得出结论; (2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN, 解析:(1);(2);(3)或或 【解析】 【分析】 (1)直接利用待定系数法,即可得出结论; (2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,设F(m,n),进而建立方程组求解,即可得出结论; (3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论;②当时,当点E在AB上方时,根据AE∥BC,即可得出结论;③当点E在AB下方时,过点作轴于,过点作轴,过点作,证明,即可得出结论. 【详解】 (1)设直线的函数表达式为, 直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0), 直线的函数表达式为; (2)如图,过点分别引轴的垂线,交轴于两点, ∵点A(0,3),点B(-4,0), ∴OA=3,OB=4, ∴AB=5, 由折叠知,AD=OA=3, 设 , 解得: 在上, 解得, , 过点F作FM⊥x轴于M,延长HD交FM于N, ∴∠BMF=∠FND=90°, ∴∠BFM+∠FBM=90°, ∵△BFD是等腰直角三角形, ∴BF=DF,∠BFD=90°, ∴∠BFM+∠DFN=90°, ∴∠FBM=∠DFN, ∴△BMF≌△FND(AAS), ∴BM=FN,FM=DN, 设F(m,n), 则 ; (3)设OC=a,则BC=4-a, 由折叠知,∠BDC=∠ADC=∠AOC=90°,CD=OC=a, 在Rt△BDC中,, ∴, ∴a=, , ∵点A,B,E为顶点的三角形与△ABC全等, ①当△ABC≌△ABE'时, ∴BE'=BC,∠ABC=∠ABE', 连接CE'交AB于D, 则CD=E'D,CD⊥AB,由(1)知, 设E'(b,c), ∴ ∴, ∴; ②当△ABC≌BAE时,当点E在AB上方时, ∴AC=BE,BC=AE,, ∴AE∥BC, ∴; ③当点E在AB下方时,AC=BE'',BC=AE'', , , 当时, , ,, 过点作轴于,过点作轴,过点作, ,, , , 即, , , , 点,, ,=, , ∴, 满足条件的点E的坐标为或或. 【点睛】 本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键. 25.(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中, 解析:(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答; (3)NQ=2MQ或NQ=MQ,分两种情况讨论,作辅助线,证明,即可解答. 【详解】 (1)如图1,分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点; 图1 (2)①连接,如图2, 图2 点是的中点, 垂直平分. , , , , , , . ②数量关系为:或. 理由如下,分两种情况: I、如图3所示,过点作于点交于点,则. 图3 正方形中,, . 在和中, . . 又, , .. . Ⅱ、如图4所示,过点作于点交于点,则. 图4 同理可证. 此时. 又,. . ,. 【点睛】 本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键. 26.(1)见解析;(2)①见解析;② 【分析】 (1)根据直角三角形中两锐角互余以及三角形外角的性质可得结果; (2)①延长AD至Q,使得,连接BQ,可证,根据已知以及等腰三角形的性质可得结论; ②作, 解析:(1)见解析;(2)①见解析;② 【分析】 (1)根据直角三角形中两锐角互余以及三角形外角的性质可得结果; (2)①延长AD至Q,使得,连接BQ,可证,根据已知以及等腰三角形的性质可得结论; ②作,连接,证明,设,则,根据勾股定理求得AE、AD的长度,求比值即可. 【详解】 解:(1)在中,, ∴ ∵, ∴, ∵, ∴ ∵, ∴, ∵, ∴; (2)①延长AD至Q,使得,连接BQ, ∵点D为边中点, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴, ∵, ∴; ②作,连接, ∴, 由(2)知, ∴ ∴, ∵, 又∵,, ∴, ∵, ∴, ∴, ∴, 设,则, ∴, ∵, ∴, ∴, ∴, ∴, ∴, ∴, 故答案为:. 【点睛】 本题主要考查三角形综合问题,涉及到全等三角形判定与性质,等腰三角形的判定与性质,勾股定理等知识点,作出合理辅助线构造全等三角形以及应用勾股定理表示出各线段的长度是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 期末试卷 达标 训练 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文