2023年人教版中学七7年级下册数学期末质量监测题含解析.doc
《2023年人教版中学七7年级下册数学期末质量监测题含解析.doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末质量监测题含解析.doc(25页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末质量监测题含解析 一、选择题 1.如图所示,下列说法正确的是( ) A.与是内错角 B.与是同位角 C.与是同旁内角 D.与是内错角 2.下列对象中不属于平移的是( ) A.在平坦雪地上滑行的滑雪运动员 B.上上下下地迎送来客的电梯 C.一棵倒映在湖中的树 D.在笔直的铁轨上飞驰而过的火车 3.在平面直角坐标系中,下列各点在第二象限的是( ) A. B. C. D. 4.下列说法中,错误的个数为( ). ①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交. A.1个 B.2个 C.3个 D.4个 5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是( ) A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤ 6.下列说法错误的是( ) A.-8的立方根是-2 B. C.的相反数是 D.3的平方根是 7.如图,直线AB∥CD,BE平分∠ABD,若∠DBE=20°,∠DEB=80°,求∠CDE的度数是( ) A.50° B.60° C.70° D.80° 8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( ) A.(21,﹣1) B.(21,0) C.(21,1) D.(22,0) 九、填空题 9.若,则±=_________. 十、填空题 10.已知点与点关于轴对称,则的值为__________. 十一、填空题 11.如图,在中,,,是的角平分线,,垂足为,,则__________. 十二、填空题 12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°. 十三、填空题 13.如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=54°,则∠EGB=_______. 十四、填空题 14.请阅读下列材料,现在规定一种新的运算:,例如:.按照这种计算的规定,当,x的值为___. 十五、填空题 15.已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_______________. 十六、填空题 16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______. 十七、解答题 17.(1)计算: (2)计算: (3)已知,求的值. 十八、解答题 18.求满足下列各式的未知数. (1). (2). 十九、解答题 19.如图,已知∠AED=∠C,∠DEF=∠B,试说明∠EFG+∠BDG=180∘,请完成下列填空: ∵∠AED=∠C (_________) ∴ED∥BC(_________) ∴∠DEF=∠EHC (___________) ∵∠DEF=∠B(已知) ∴_______(等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵_________________(邻补角的意义) ∴∠EFG+∠BDG=180∘(___________) 二十、解答题 20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足. (1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标; (2)点的坐标为,的面积是的倍,求点的坐标. 二十一、解答题 21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根. 二十二、解答题 22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________? (3)阴影正方形的边长介于哪两个整数之间?请说明理由. 二十三、解答题 23.如图1,//,点、分别在、上,点在直线、之间,且. (1)求的值; (2)如图2,直线分别交、的角平分线于点、,直接写出的值; (3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值. 二十四、解答题 24.如图1,D是△ABC延长线上的一点,CEAB. (1)求证:∠ACD=∠A+∠B; (2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数. (3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由. 二十五、解答题 25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1. (1)当∠A为70°时, ∵∠ACD-∠ABD=∠______ ∴∠ACD-∠ABD=______° ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=______°; (2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______; (3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______. (4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角,同旁内角,内错角的定义可以得到结果. 【详解】 解:A、与不是内错角,故错误; B、与是邻补角,故错误; C、与是同旁内角,故正确; D、与是同位角,故错误; 故选C. 【点睛】 本题主要考查了同位角,内错角,同旁内角的概念,比较简单. 2.C 【分析】 根据平移的性质,对选项进行一一分析,利用排除法求解. 【详解】 解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移; B、电梯上上下下地迎送来客,符合平移的性质,故属于平移 解析:C 【分析】 根据平移的性质,对选项进行一一分析,利用排除法求解. 【详解】 解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移; B、电梯上上下下地迎送来客,符合平移的性质,故属于平移; C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移; D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移; 故选:C. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称. 3.C 【分析】 根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答. 【详解】 解:A、(-,0)在x轴上,故本选项不符合题意; B、(2,-1)在第四象限,故本选项不符合题意; D、(-2,1)在第二象限,故本选项符合题意; D、(-2,-1)在第三象限,故本选项不符合题意. 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案. 【详解】 ①在同一平面内,两条不相交的直线叫做平行线,故本小题错误, ②过直线外一点有且只有一条直线与已知直线平行,故本小题错误, ③在同一平面内不平行的两条直线一定相交;故本小题错误, ④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个. 故选D. 【点睛】 本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键. 5.C 【分析】 根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可. 【详解】 解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=, ∵∠AOC=∠BAE1+∠AE1C, ∴∠AE1C=﹣. (2)如图2,过E2作AB平行线,则由AB∥CD, 可得∠1=∠BAE2=,∠2=∠DCE2=, ∴∠AE2C=+. (3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=, ∵∠BAE3=∠BOE3+∠AE3C, ∴∠AE3C=﹣. (4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°, ∴∠AE4C=360°﹣﹣. 综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣. 故选:C. 【点睛】 本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 6.B 【分析】 根据平方根以及立方根的概念进行判断即可. 【详解】 A、-8的立方根为-2,这个说法正确; B、|1-|=-1,这个说法错误; C.-的相反数是,这个说法正确; D、3的平方根是±,这个说法正确; 故选B. 【点睛】 本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根. 7.B 【分析】 延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解. 【详解】 延长,交于点, BE平分∠ABD,, , ,∠DEB=80°, , , , 故选B. 【点睛】 本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键. 8.C 【分析】 计算点P走一个半圆的时间,确定第21秒点P的位置. 【详解】 点P运动一个半圆用时为秒, ∵21=10×2+1, ∴21秒时,P在第11个的半圆的最高点, ∴点P坐标为(21,1), 解析:C 【分析】 计算点P走一个半圆的时间,确定第21秒点P的位置. 【详解】 点P运动一个半圆用时为秒, ∵21=10×2+1, ∴21秒时,P在第11个的半圆的最高点, ∴点P坐标为(21,1), 故选:C. 【点睛】 本题考查了点的坐标规律,关键是计算出点P走一个半圆的时间. 九、填空题 9.±1.01 【分析】 根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可. 【详解】 解:∵, ∴, 故答案为±1.01. 【点睛】 本题考查了算术平方根的移 解析:±1.01 【分析】 根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可. 【详解】 解:∵, ∴, 故答案为±1.01. 【点睛】 本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键. 十、填空题 10.-1 【分析】 直接利用关于y轴对称点的性质得出a,b的值进而得出答案. 【详解】 解:∵点A(a,2019)与点是关于y轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为: 解析:-1 【分析】 直接利用关于y轴对称点的性质得出a,b的值进而得出答案. 【详解】 解:∵点A(a,2019)与点是关于y轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为:-1. 【点睛】 本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 十一、填空题 11.【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 解析:【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 十二、填空题 12.40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠D 解析:40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠DAE+∠CAB=180°-∠DAC=90° ∴∠1+∠2=90° ∴∠2=90°-∠1=40° 故答案为:40. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 十三、填空题 13.108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的 解析:108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EGB. 【详解】 解:∵AD∥BC,∠EFG=54°, ∴∠DEF=∠EFG=54°,∠1+∠2=180°, 由折叠的性质可得:∠GEF=∠DEF=54°, ∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°, ∴∠EGB=180°-∠1=108°. 故答案为:108°. 【点睛】 此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数. 十四、填空题 14.【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤 解析: 【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 十五、填空题 15.(2,2)或(4,-4). 【分析】 点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标. 【详解】 解:∵点P到两坐标轴的距离相等 ∴= ∴ 解析:(2,2)或(4,-4). 【分析】 点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标. 【详解】 解:∵点P到两坐标轴的距离相等 ∴= ∴3a-1=3-a或3a-1=-(3-a) 解得a=1或a=-1 当a=1时,3-a=2,3a-1=2; 当a=-1时,3-a=4,3a-1=-4 ∴点P的坐标为(2,2)或(4,-4). 故答案为(2,2)或(4,-4). 【点睛】 本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号. 十六、填空题 16.(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2, 解析:(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒, 以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒, 故第42秒时质点到达的位置为(6,6), 故答案为:(6,6). 【点睛】 本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键. 十七、解答题 17.(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; (3)直接利用平方根的定义计算得出答案. 【详解】 解:(1) , ; (2) , , ; (3)∵ ∴ 解得:或. 故答案为:(1)2;(2)6;(3) 或 【点睛】 本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1)或;(2) 【分析】 (1)根据平方根的定义直接开平方求解即可; (2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), , 解得. 解析:(1)或;(2) 【分析】 (1)根据平方根的定义直接开平方求解即可; (2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), , 解得. 【点睛】 本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义. 十九、解答题 19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠ 解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题. 【详解】 解:∵∠AED=∠C (已知) ∴ED∥BC(同位角相等,两直线平行) ∴∠DEF=∠EHC (两直线平行,内错角相等) ∵∠DEF=∠B(已知) ∴∠EHC =∠B (等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵∠DFE+∠EFG =180∘(邻补角的意义) ∴∠EFG+∠BDG=180∘(等量代换). 【点睛】 本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键. 二十、解答题 20.(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,- 解析:(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标. 【详解】 解:(1)∵a没有平方根, ∴a<0, ∴-a>0, ∵点B到x轴的距离是点A到x轴距离的3倍, ∴, ∵a+b=4, ∴, 解得:a=-2或a=1(舍), ∴b=6,此时点B的坐标为(-2,6); (2)∵点A的坐标为(a,-a),点B坐标为(a,4-a), ∴AB=4,AB与y轴平行, ∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍, ∴点A、点B在y轴的右侧,即a>0, ∴, 解得:a=或a=8, ∴B点坐标为(,)或(8,-4). 【点睛】 本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质. 二十一、解答题 21.【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, 解析: 【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, ∴的整数部分是6,则小数部分是:, ∴, ∴的平方根为:. 【点睛】 本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用. 二十二、解答题 22.(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的 解析:(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的面积是3×3-4×=5 故答案为:5; (2)设阴影正方形的边长为x,则x2=5 ∴x=(-舍去) 故答案为:; (3)∵ ∴ ∴阴影正方形的边长介于2与3两个整数之间. 【点睛】 本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小. 二十三、解答题 23.(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM 解析:(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解; (3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得 即可得关于n的方程,计算可求解n值. 【详解】 证明:过点O作OG∥AB, ∵AB∥CD, ∴AB∥OG∥CD, ∴ ∴ 即 ∵∠EOF=100°, ∴∠; (2)解:过点M作MK∥AB,过点N作NH∥CD, ∵EM平分∠BEO,FN平分∠CFO, 设 ∵ ∴ ∴x-y=40°, ∵MK∥AB,NH∥CD,AB∥CD, ∴AB∥MK∥NH∥CD, ∴ ∴ =x-y =40°, 故的值为40°; (3)如图,设直线FK与EG交于点H,FK与AB交于点K, ∵AB∥CD, ∴ ∵ ∴ ∵ ∴ 即 ∵FK在∠DFO内, ∴ , ∵ ∴ ∴ 即 ∴ 解得 . 经检验,符合题意, 故答案为:. 【点睛】 本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 二十四、解答题 24.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角 解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案; (3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB. 【详解】 解:(1)∵CEAB, ∴∠ACE=∠A,∠ECD=∠B, ∵∠ACD=∠ACE+∠ECD, ∴∠ACD=∠A+∠B; (2)∵CF平分∠ECD,FA平分∠HAD, ∴∠FCD=∠ECD,∠HAF=∠HAD, ∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD), ∵CHAB, ∴∠ECD=∠B, ∵AHBC, ∴∠B+∠HAB=180°, ∵∠BAD=70°, , ∴∠F=(∠B+∠HAD)=55°; (3)∠MQN=∠ACB,理由如下: 平分, . 平分, . , . ∴∠MQN=∠MQG﹣∠NQG =180°﹣∠QGR﹣∠NQG =180°﹣(∠AQG+∠QGD) =180°﹣(180°﹣∠CQG+180°﹣∠QGC) =(∠CQG+∠QGC) =∠ACB. 【点睛】 本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键. 二十五、解答题 25.(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解; (2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律; (3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论; (4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系. 【详解】 解:(1)当∠A为70°时, ∵∠ACD-∠ABD=∠A, ∴∠ACD-∠ABD=70°, ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线, ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=35°; 故答案为:A,70,35; (2)∵A1B、A1C分别平分∠ABC和∠ACD, ∴∠ACD=2∠A1CD,∠ABC=2∠A1BC, 而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC, ∴∠BAC=2∠A1=80°, ∴∠A1=40°, 同理可得∠A1=2∠A2, 即∠BAC=22∠A2=80°, ∴∠A2=20°, ∴∠A=2n∠An, 故答案为:∠A=2∠An. (3)∵∠ABC+∠DCB=360°-(∠A+∠D), ∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F, ∴360°-(α+β)=180°-2∠F, 2∠F=∠A+∠D-180°, ∴∠F=(∠A+∠D)-90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°. (4)①∠Q+∠A1的值为定值正确. ∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1=∠A1CD-∠A1BD= ∠BAC, ∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线, ∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC, ∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC, ∴∠Q+∠A1=180°. 【点睛】 本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 质量 监测 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文