人教中学七年级下册数学期末测试题(含答案).doc
《人教中学七年级下册数学期末测试题(含答案).doc》由会员分享,可在线阅读,更多相关《人教中学七年级下册数学期末测试题(含答案).doc(25页珍藏版)》请在咨信网上搜索。
人教中学七年级下册数学期末测试题(含答案) 一、选择题 1.“49的平方根是”的表达式正确的是() A. B. C. D. 2.下列四幅名车标志设计中能用平移得到的是( ) A.奥迪 B.本田 C.奔驰 D.铃木 3.平面直角坐标系中,点M(1,﹣5)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ) A.对顶角相等 B.8的立方根是±2 C.实数和数轴上的点是一一对应的 D.平行于同一直线的两条直线平行 5.如图,直线,点E,F分别在直线.AB和直线CD上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为( ) A. B. C. D. 6.若,则的值是( ) A.1 B.-3 C.1或-3 D.-1或3 7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( ) A. B. C. D. 8.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到各点.若A2021的坐标为(﹣3,2),设A1(x,y),则x+y的值是( ) A.﹣5 B.3 C.﹣1 D.5 九、填空题 9.的算术平方根是__________. 十、填空题 10.点A(2,4)关于x轴对称的点的坐标是_____. 十一、填空题 11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号) 十二、填空题 12.如图,,,,则∠CAD的度数为____________. 十三、填空题 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 十四、填空题 14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____. 十五、填空题 15.平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若△PAB的面积为18,则m,n满足的数量关系式为________. 十六、填空题 16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________. 十七、解答题 17.计算:(1) (2) 十八、解答题 18.求下列各式中的值 (1) (2) 十九、解答题 19.补全下面的证明过程和理由: 如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD. 求证:∠A=∠F. 证明:∵∠C=∠COA,∠D=∠BOD,( ) 又∵∠COA=∠BOD,( ) ∴∠C= .( ) ∴AC∥DF( ). ∴∠A= ( ). ∵EF∥AB, ∴∠F= ( ). ∴∠A=∠F( ). 二十、解答题 20.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,. (1)求出的面积; (2)平移,若点的对应点的坐标为,画出平移后对应的,写出坐标. 二十一、解答题 21.若的整数部分为a,小数部分为b. (1)求a,b的值. (2)求的值. 二十二、解答题 22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”) (3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 二十三、解答题 23.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 二十四、解答题 24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,. (1)将直角如图1位置摆放,如果,则______; (2)将直角如图2位置摆放,N为AC上一点,,请写出与之间的等量关系,并说明理由. (3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论. 二十五、解答题 25.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分 (1)求的度数; (2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据平方根的表示方法,即可得到答案. 【详解】 解:“49的平方根是”表示为:. 故选A. 【点睛】 本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键. 2.A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得 解析:A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得到的,故的符合题意; C、不是经过平移得到的,故不符合题意; D、不是经过平移得到的,故不符合题意; 故选A. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.D 【分析】 根据各个象限点坐标的符号特点进行判断即可得到答案. 【详解】 解:∵1>0,-5<0, ∴点M(1,-5)在第四象限. 故选D. 【点睛】 本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可. 【详解】 解:A、对顶角相等,是真命题; B、8的立方根是2,原命题是假命题; C、实数和数轴上的点是一一对应的,是真命题; D、平行于同一直线的两条直线平行,是真命题; 故选:B. 【点睛】 本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大. 5.D 【分析】 过点P作PQ∥AB,过点H作HG∥AB,根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH. 【详解】 解:过点P作PQ∥AB,过点H作HG∥AB, , 则PQ∥CD,HG∥CD, ∴∠BEP=∠QPE,∠DFP=∠QPF, ∵∠EPF=∠QPE+∠QPF=78°, ∴∠BEP+∠DFP=78°, ∴∠AEP+∠CFP=360°-78°=282°, ∵EH平分∠AEP,HF平分∠CFP, ∴∠AEH+∠CFH=282°÷2=141°, 同理可得:∠EHF=∠AEH+∠CFH=141°, 故选D. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论. 6.C 【分析】 根据题意,利用平方根,立方根的定义求出a,b的值,再代入求解即可. 【详解】 解: , 当时,; ∴当时,. 故选:C. 【点睛】 本题考查的知识点是平方根以及立方根的定义,根据定义求出a,b的值是解此题的关键. 7.B 【分析】 根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解. 【详解】 解:∵在矩形纸片中,,, , , ∵折叠, ∴, . 故选:B. 【点睛】 本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要. 8.C 【分析】 列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论. 【 解析:C 【分析】 列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论. 【详解】 解:∵A2021的坐标为(﹣3,2), 根据题意可知: A2020的坐标为(﹣3,﹣2), A2019的坐标为(1,﹣2), A2018的坐标为(1,2), A2017的坐标为(﹣3,2), … ∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数). ∵2021=505×4•••1, ∵A2021的坐标为(﹣3,2), ∴A1(﹣3,2), ∴x+y=﹣3+2=﹣1. 故选:C. 【点睛】 本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键. 九、填空题 9.【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.(2,﹣4) 【分析】 根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案. 【详解】 点A(2,4)关于x轴对称的点的坐标是(2,﹣4), 故答案为(2,﹣4). 【点睛 解析:(2,﹣4) 【分析】 根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案. 【详解】 点A(2,4)关于x轴对称的点的坐标是(2,﹣4), 故答案为(2,﹣4). 【点睛】 此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律. 十一、填空题 11.①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC 解析:①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC=D, ∴AD垂直平分C′C; ∴①,②都正确; ∵B=D, DC=D, ∴B=D= DC, ∴∠3=∠B,∠4=∠5, ∴∠3=∠4+∠5=2∠5即∠B=2∠BC; ∴③错误; 根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3, ∵∠ACB的角平分线交AD于点E, ∴2(∠6+∠5)=2∠B, ∴ ∴D ∥EC ∴④正确; 故答案为:①②④. 【点睛】 本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键. 十二、填空题 12.【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析: 【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 十三、填空题 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 十四、填空题 14.-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+ 解析:-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5, ∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1, 把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中, 可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】 本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 十五、填空题 15.【分析】 连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答. 【详解】 解:连接OP,如图: ∵A(2,0),B(0,3), ∴OA=2,OB=3, 解析: 【分析】 连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答. 【详解】 解:连接OP,如图: ∵A(2,0),B(0,3), ∴OA=2,OB=3, ∵∠AOB=90°, ∴, ∵点P(m,n)为第三象限内一点, , , , , 整理可得:; 故答案为:. 【点睛】 本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形. 十六、填空题 16.(-506,-506) 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A 解析:(-506,-506) 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论. 【详解】 解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…, ∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数), ∵2021=505×4+1, ∴A2021(-506,-506), 故答案为:(-506,-506). 【点睛】 本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键. 十七、解答题 17.(1)0;(2)4 【分析】 (1)根据绝对值的性质去绝对值然后合并即可; (2)根据乘法分配律计算即可. 【详解】 (1)解原式= =0; (2)解原式= =3+1 解析:(1)0;(2)4 【分析】 (1)根据绝对值的性质去绝对值然后合并即可; (2)根据乘法分配律计算即可. 【详解】 (1)解原式= =0; (2)解原式= =3+1 =4. 故答案为(1)0;(2)4. 【点睛】 本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键. 十八、解答题 18.(1);(2) 【分析】 (1)先移项,再根据平方根的性质开平方即可得; (2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得. 【详解】 解:(1) ∴ 即 (2) 解得, 解析:(1);(2) 【分析】 (1)先移项,再根据平方根的性质开平方即可得; (2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得. 【详解】 解:(1) ∴ 即 (2) 解得, 【点睛】 本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质. 十九、解答题 19.见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 解析:见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 又∵∠COA=∠BOD(对顶角相等), ∴∠C=∠D(等量代换). ∴AC∥DF(内错角相等,两直线平行). ∴∠A=∠ABD(两直线平行,内错角相等). ∵EF∥AB, ∴∠F=∠ABD(两直线平行,内错角相等). ∴∠A=∠F(等量代换). 故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换. 【点睛】 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 二十、解答题 20.(1)3;(2)B2(3,0),画图见解析 【分析】 (1)先求出AC,BC的长,然后根据三角形面积公式求解即可; (2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次 解析:(1)3;(2)B2(3,0),画图见解析 【分析】 (1)先求出AC,BC的长,然后根据三角形面积公式求解即可; (2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次连接即可得到答案 【详解】 解:(1)∵在平面直角坐标系中,的三个顶点的坐标分别是,,, ∴AC=3,BC=2, ∴; (2)∵A(-3,2),A2(0,-2), ∴A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的, ∴B2,C2的坐标分别为(3,0),(3,-2), 如图所示,即为所求. 【点睛】 本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1),;(2). 【分析】 (1)利用无理数的估值方法找到的取值范围,即可得到a、b的值; (2)将a、b代入求值. 【详解】 (1)∵, ∴,. (2) 【点睛】 本题考查无理数的整数部分 解析:(1),;(2). 【分析】 (1)利用无理数的估值方法找到的取值范围,即可得到a、b的值; (2)将a、b代入求值. 【详解】 (1)∵, ∴,. (2) 【点睛】 本题考查无理数的整数部分与小数部分问题,掌握无理数的估值方法是关键. 二十二、解答题 22.(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的 解析:(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, 设大正方形的边长为xcm, ∴ , ∴ ∴大正方形的边长为cm; (2)设圆的半径为r, ∴由题意得, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm2, ∴正方形的边长为30cm ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 二十三、解答题 23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 二十四、解答题 24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 【分析】 (1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案; (2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论; (3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可. 【详解】 解:(1)如图1,作CP∥a, ∵, ∴CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∴∠BCP=180°﹣∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°﹣∠CEF=90°, ∵∠AOG=46°, ∴∠CEF=136°, 故答案为136°; (2)∠AOG+∠NEF=90°. 理由如下:如图2,作CP∥a, 则CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, 而∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°; (3)如图3,当点P在GF上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠GOP+∠PQF, ∴∠OPQ=140°﹣∠POQ+∠PQF; 如图4,当点P在线段GF的延长线上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴140°﹣∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键. 二十五、解答题 25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2 解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2. (3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可. 【详解】 (1)∵CB∥OA ∴∠C+∠COA=180° ∵∠C=100° ∴∠COA=180°-∠C=80° ∵∠FOB=∠AOB,OE平分∠COF ∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°; ∴∠EOB=40°; (2)∠OBC:∠OFC的值不发生变化 ∵CB∥OA ∴∠OBC=∠BOA,∠OFC=∠FOA ∵∠FOB=∠AOB ∴∠FOA=2∠BOA ∴∠OFC=2∠OBC ∴∠OBC:∠OFC=1:2 (3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA. 设∠AOB=x, ∵CB∥AO, ∴∠CBO=∠AOB=x, ∵CB∥OA,AB∥OC, ∴∠OAB+∠ABC=180°,∠C+∠ABC=180° ∴∠OAB=∠C=100°. ∵∠OEC=∠CBO+∠EOB=x+40°, ∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x, ∴x+40°=80°-x, ∴x=20°, ∴∠OEC=∠OBA=80°-20°=60°. 【点睛】 本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文