人教版中学七年级下册数学期末复习(及解析).doc
《人教版中学七年级下册数学期末复习(及解析).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末复习(及解析).doc(24页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末复习(及解析) 一、选择题 1.“49的平方根是”的表达式正确的是() A. B. C. D. 2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( ) A. B. C. D. 3.下列各点中,在第四象限的是( ) A. B. C. D. 4.下列命题中,是假命题的是( ) A.两条直线被第三条直线所截,同位角相等 B.同旁内角互补,两直线平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( ) A. B. C. D. 6.若,,,则a,b,c的大小关系是( ) A. B. C. D. 7.如图,直线l1∥l2且与直线l3相交于A、C两点.过点A作AD⊥AC交直线l2于点D.若∠BAD=35°,则∠ACD=( ) A.35° B.45° C.55° D.70° 8.如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,……,按照这样的运动规律,点第2021次运动到点( ) A. B. C. D. 九、填空题 9.25的算术平方根是 _______ . 十、填空题 10.点关于轴的对称点的坐标为______. 十一、填空题 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 十二、填空题 12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度. 十三、填空题 13.如图,将一张长方形纸片沿折叠后,点,分别落在,的位置,若,则的度数为______. 十四、填空题 14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____. 十五、填空题 15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________. 十六、填空题 16.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________. 十七、解答题 17.计算下列各式的值: (1) (2) 十八、解答题 18.(1)已知am=3,an=5,求a3m﹣2n的值. (2)已知x﹣y=,xy=,求下列各式的值: ①x2y﹣xy2; ②x2+y2. 十九、解答题 19.根据下列证明过程填空:已知:如图,于点,于点,.求证:. 证明:∵,(已知) ∴(______________) ∴(_____________) ∴(_____________) 又∵(已知) ∴(_________) ∴(_________) ∴(__________) 二十、解答题 20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,. (1)将向右平移4个单位长度得到,画出平移后的; (2)将向下平移5个单位长度得到,画出平移后的; (3)直接写出三角形的面积为______平方单位.(直接写出结果) 二十一、解答题 21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分. 请解答下列问题: (1)的整数部分是____,小数部分是_____. (2)如果的小数部分是a,的整数部分是b,求的值. (3)已知,其中x是正整数,,求的相反数. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 二十四、解答题 24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 二十五、解答题 25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据平方根的表示方法,即可得到答案. 【详解】 解:“49的平方根是”表示为:. 故选A. 【点睛】 本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键. 2.C 【分析】 根据平移的特点即可判断. 【详解】 将图进行平移,得到的图形是 故选C. 【点睛】 此题主要考查平移的特点,解题的关键是熟知平移的定义. 解析:C 【分析】 根据平移的特点即可判断. 【详解】 将图进行平移,得到的图形是 故选C. 【点睛】 此题主要考查平移的特点,解题的关键是熟知平移的定义. 3.B 【分析】 根据第四象限的点的横坐标是正数,纵坐标是负数解答. 【详解】 解:A、(3,0)在x轴上,不合题意; B、(2,-5)在第四象限,符合题意; C、(-5,-2)在第三象限,不合题意; D、(-2,3),在第二象限,不合题意. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A 【分析】 根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解. 【详解】 解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意; B. 同旁内角互补,两直线平行,真命题,不符合题意; C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意; D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意; 故选A. 【点睛】 本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键. 5.B 【分析】 根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出. 【详解】 解:由翻折可知,∠DAE=2,∠CBF=2, ∵, ∴∠DAB+∠CBA=180°, ∴∠DAE+∠CBF=180°, 即, ∴, 故选:B. 【点睛】 本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算. 6.D 【分析】 根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】 解:∵,,, ∴, 故选:D. 【点睛】 本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.C 【分析】 由题意易得∠CAD=90°,则有∠CAB=125°,然后根据平行线的性质可求解. 【详解】 解:∵AD⊥AC, ∴∠CAD=90°, ∵∠BAD=35°, ∴∠CAB=∠BAD+∠CAD=125°, ∵l1∥l2, ∴∠ACD+∠CAB=180°, ∴∠ACD=55°; 故选C. 【点睛】 本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行线的性质是解题的关键. 8.A 【分析】 令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4 解析:A 【分析】 令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1)”,根据该规律即可得出结论. 【详解】 解:令P点第n次运动到的点为Pn点(n为自然数). 观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,−1),P4(4,0),P5(5,1),…, ∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1). ∵2021=505×4+1, ∴P第2021次运动到点(2021,1). 故选:A. 【点睛】 本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键. 九、填空题 9.5 【详解】 试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5. 考点:算术平方根. 解析:5 【详解】 试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5. 考点:算术平方根. 十、填空题 10.【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点 解析: 【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键. 十一、填空题 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 十二、填空题 12.40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【 解析:40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【点睛】 此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键. 十三、填空题 13.50° 【分析】 先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论. 【详解】 解:∵AD∥BC,∠EFB=65°, ∴∠DEF=65°, 解析:50° 【分析】 先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论. 【详解】 解:∵AD∥BC,∠EFB=65°, ∴∠DEF=65°, 又∵∠DEF=∠D′EF, ∴∠D′EF=65°, ∴∠AED′=50°. 故答案是:50°. 【点睛】 本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等. 十四、填空题 14.-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+ 解析:-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5, ∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1, 把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中, 可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】 本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 十五、填空题 15.(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 解析:(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 十六、填空题 16.(1011,﹣1010) 【分析】 求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010). 【详解】 解:由题意A1(1 解析:(1011,﹣1010) 【分析】 求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010). 【详解】 解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••, 可以看出,3=,5=,7=,各个点的纵坐标等于横坐标的相反数+1, 故=1011, ∴A2021(1011,﹣1010), 故答案为:(1011,﹣1010). 【点评】 本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 十七、解答题 17.(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考 解析:(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 十八、解答题 18.(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, 解析:(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, ; (2)①,, ; ②,, . 【点睛】 本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键. 十九、解答题 19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 证明:证明:∵,(已知) ∴(垂直的定义) ∴(同位角相等,两直线平行) ∴(两直线平行,同位角相等) 又∵(已知) ∴(同位角相等,两直线平行) ∴(两直线平行,内错角相等) ∴(等量代换) 【点睛】 本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 二十、解答题 20.(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应 解析:(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积. 【详解】 解:(1)平移后的三角形如下图所示; (2)平移后的三角形如下图所示; (3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积, ∴S△ABC . 【点睛】 本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差. 二十一、解答题 21.(1)3;;(2)7;(3) 【分析】 (1)先求出的取值范围,即可求出的整数部分,从而求出结论; (2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解; ( 解析:(1)3;;(2)7;(3) 【分析】 (1)先求出的取值范围,即可求出的整数部分,从而求出结论; (2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解; (3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数. 【详解】 解:(1)∵3<<4, ∴的整数部分是3,小数部分是 故答案为:3;; (2)∵ ∴ ∴ ∴的小数部分a=-2= ∵ ∴ ∴的整数部分b=4 ∴ =+4 =7; (3)∵ ∴ ∴ ∴的整数部分为2,小数部分为-2= ∵,其中x是正整数,, ∴,y= ∴= ∴的相反数为. 【点睛】 此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间 解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 二十四、解答题 24.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 二十五、解答题 25.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 复习 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文