人教版七年级下册数学期末解答题培优试卷含答案.doc
《人教版七年级下册数学期末解答题培优试卷含答案.doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末解答题培优试卷含答案.doc(35页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末解答题培优试卷含答案 一、解答题 1.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上. (1)求正方形的面积和边长; (2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标. 2.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 3.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 4.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为? 5.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等. (1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,) 二、解答题 6.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 7.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 8.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 9.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0 (1)α= ,β= ;直线AB与CD的位置关系是 ; (2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论; (3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由. 10.综合与探究 (问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动 (1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移) (2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动, ①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由. ②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系. 三、解答题 11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且. (1)填空:_________; (2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行? (3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 12.已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E.(注意:此题不允许使用三角形,四边形内角和进行解答) (1)在图1中,当点P运动到线段AC上时,.直接写出的度数; (2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明; (3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明. 13.如图,,平分,设为,点E是射线上的一个动点. (1)若时,且,求的度数; (2)若点E运动到上方,且满足,,求的值; (3)若,求的度数(用含n和的代数式表示). 14.综合与探究 综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,, 操作发现: (1)如图1.,求的度数; (2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由. 实践探究: (3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 15.如图1,在平面直角坐标系中,,且满足,过作轴于 (1)求三角形的面积. (2)发过作交轴于,且分别平分,如图2,若,求的度数. (3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由. 四、解答题 16.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 17.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 18.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分 (1)求的度数; (2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由. 19.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点. (1)如图1,点在线段上运动时,平分. ①若,,则_____;若,则_____; ②试探究与之间的数量关系?请说明理由; (2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由. 20.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题: (1)仔细观察,在图2中有 个以线段AC为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P的度数; (3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 . 【参考答案】 一、解答题 1.(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标 解析:(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标即可. 【详解】 解:(1)正方形的面积, 正方形边长为; (2)建立如图平面直角坐标系, 则,,,. 【点睛】 本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键. 2.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 3.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 4.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据 解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形. 【详解】 (1)∵用两个面积为的小正方形拼成一个大的正方形, ∴大正方形的面积为400, ∴大正方形的边长为 故答案为:20cm; (2)设长方形纸片的长为,宽为, , 解得:, , 答:不能剪出长宽之比为5:4,且面积为的大长方形. 【点睛】 此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 5.(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个 解析:(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答. 【详解】 解:(1)设正方形边长为,则,由算术平方根的意义可知, 所以正方形的边长是. (2)不同意. 因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为, 所以,即两个正方形边长的和大于长方形的长, 所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片. 【点睛】 本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 二、解答题 6.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 7.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 8.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 解析:(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 9.(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于 解析:(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得. 【详解】 解:(1), ,, , ,, , ; 故答案为:20、20,; (2); 理由:由(1)得, , , , , , , ; (3)的值不变,; 理由:如图3中,作的平分线交的延长线于, , , ,, , , , 设,, 则有:, 可得, , . 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 10.(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论 解析:(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案. 【详解】 解:(1)作PQ∥EF,如图: ∵, ∴, ∴,, ∵ ∴; (2)①; 理由如下:如图, 过作交于, ∵, ∴, ∴,, ∴; ②当点在延长线时,如备用图1: ∵PE∥AD∥BC, ∴∠EPC=,∠EPD=, ∴; 当在之间时,如备用图2: ∵PE∥AD∥BC, ∴∠EPD=,∠CPE=, ∴. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系. 三、解答题 11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒, 解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110; (3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化. 【详解】 解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2, ∴∠BAN=180°×=72°, 故答案为:72; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1, ∵PQ∥MN, ∴∠PBD=∠BDA, ∵AC∥BD, ∴∠CAM=∠BDA, ∴∠CAM=∠PBD ∴2t=1•(30+t), 解得 t=30; ②当90<t<150时,如图2, ∵PQ∥MN, ∴∠PBD+∠BDA=180°, ∵AC∥BD, ∴∠CAN=∠BDA ∴∠PBD+∠CAN=180° ∴1•(30+t)+(2t-180)=180, 解得 t=110, 综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化. 理由:设灯A射线转动时间为t秒, ∵∠CAN=180°-2t, ∴∠BAC=72°-(180°-2t)=2t-108°, 又∵∠ABC=108°-t, ∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°, ∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°, ∴∠BAC:∠BCD=2:1, 即∠BAC=2∠BCD, ∴∠BAC和∠BCD关系不会变化. 【点睛】 本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 12.(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; (2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论; (3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论. 【详解】 解:(1)如图,过点作, , , , , , 又,且点运动到线段上, , 平分,平分, , ; (2)猜想,证明如下: 如图,过点作,过点作, 由(1)已得:, 同理可得:, ; (3),证明如下: 如图,过点作,过点作, 由(1)已得:, 即, , ,即, , , ,即, , , , , 即. 【点睛】 本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 13.(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先 解析:(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论; (3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论. 【详解】 解:(1),, , 平分, , , 又, ; (2)根据题意画图,如图1所示, ,, , , , , 又平分, , ; (3)①如图2所示, , , 平分, , , 又, , , 解得; ②如图3所示, , , 平分, , , 又, , , 解得. 综上的度数为或. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 14.(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠ 解析:(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)如图1 ,, , , ; 图1 (2)理由如下:如图2. 过点作, 图2 , , , , , , ; (3), 图3 理由如下:如图3,过点作, 平分, , , 又, , , , , 又 , , . 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 15.(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出 解析:(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4; (2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°; (3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算. 【详解】 解:(1)由题意知:a=−b,a−b+4=0, 解得:a=−2,b=2, ∴ A(−2,0),B(2,0),C(2,2), ∴S△ABC=; (2)∵CB∥y轴,BD∥AC, ∴∠CAB=∠ABD, ∴∠3+∠4+∠5+∠6=90°, 过E作EF∥AC, ∵BD∥AC, ∴BD∥AC∥EF, ∵AE,DE分别平分∠CAB,∠ODB, ∴∠3=∠4=∠1,∠5=∠6=∠2, ∴∠AED=∠1+∠2=×90°=45°; (3)存在.理由如下: 设P点坐标为(0,t),直线AC的解析式为y=kx+b, 把A(−2,0)、C(2,2)代入得: ,解得, ∴直线AC的解析式为y=x+1, ∴G点坐标为(0,1), ∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1, ∴P点坐标为(0,3)或(0,−1). 【点睛】 本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等. 四、解答题 16.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识. 17.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 解答 题培优 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文