人教中学七年级下册数学期末复习试卷附答案.doc
《人教中学七年级下册数学期末复习试卷附答案.doc》由会员分享,可在线阅读,更多相关《人教中学七年级下册数学期末复习试卷附答案.doc(25页珍藏版)》请在咨信网上搜索。
人教中学七年级下册数学期末复习试卷附答案 一、选择题 1.如图,属于同位角的是( ) A.与 B.与 C.与 D.与 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A. B. C. D. 3.下列各点在第二象限的是( ) A. B. C. D. 4.下列四个命题是真命题的是( ) A.两条直线被第三条直线所截,同位角相等 B.互补的两个角一定是邻补角 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.相等的角是对顶角 5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( ) A. B. C. D. 6.下列说法正确的是( ) A.0的立方根是0 B.0.25的算术平方根是-0.5 C.-1000的立方根是10 D.的算术平方根是 7.如图,在中,交AC于点E,交BC于点F,连接DC,,,则的度数是( ) A.42° B.38° C.40° D.32° 8.如图,点,点,点,点,…,按照这样的规律下去,点的坐标为( ) A. B. C. D. 九、填空题 9.若则 ________. 十、填空题 10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____. 十一、填空题 11.如图,在中,.三角形的外角和的角平分线交于点E,则_____度. 十二、填空题 12.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______. 十三、填空题 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 十四、填空题 14.已知a,b为两个连续的整数,且,则的平方根为___________. 十五、填空题 15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____. 十六、填空题 16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)……依此规律A100坐标为________. 十七、解答题 17.计算下列各式的值: (1)|–2|– + (–1)2021; (2). 十八、解答题 18.求下列各式中的的值: (1); (2). 十九、解答题 19.完成下面的证明. 如图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180°. 证明:∵AD⊥BC,EF⊥BC(已知), ∴∠EFB=90°,∠ADB=90°( ), ∴∠EFB=∠ADB(等量代换), ∴EFAD( ), ∴∠1=∠BAD( ), 又∵∠1=∠2(已知), ∴∠2=∠ (等量代换), ∴DGBA(内错角相等,两直线平行), ∴∠BAC+∠AGD=180°( ). 二十、解答题 20.如图①,在平面直角坐标系中,点、在轴上,,,. (1)写出点、、的坐标. (2)如图②,过点作交轴于点,求的大小. (3)如图③,在图②中,作、分别平分、,求的度数. 二十一、解答题 21.阅读下面的文字,解答问题. 大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题: (1)的整数部分是___________,小数部分是___________; (2)若设整数部分是,小数部分是,求的值. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.综合与探究 (问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动 (1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移) (2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动, ①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由. ②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系. 二十四、解答题 24.(感知)如图①,,求的度数.小明想到了以下方法: 解:如图①,过点作, (两直线平行,内错角相等) (已知), (平行于同一条直线的两直线平行), (两直线平行,同旁内角互补). (已知), (等式的性质). (等式的性质). 即(等量代换). (探究)如图②,,,求的度数. (应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________. 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据同位角、内错角、同旁内角的意义进行判断即可. 【详解】 解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意. ∠1与∠4是对顶角,因此选项B不符合题意. ∠1与∠3是内错角,因此选项C不符合题意. ∠2与∠4同旁内角,因此选项D不符合题意. 故选:A. 【点睛】 本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提. 2.C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到 解析:C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到. 故选C. 【点睛】 本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.C 【分析】 根据各象限内点的坐标特征对各选项分析判断即可得解. 【详解】 解:A.在第一象限,故本选项不合题意; B.在第四象限,故本选项不合题意; C.在第二象限,故本选项符合题意. D.在第三象限,故本选项不合题意; 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 4.C 【分析】 根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可. 【详解】 解:A、两条平行的直线被第三条直线所截,同位角相等, 原命题错误,是假命题,不符合题意; B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意; C、在同一平面内,垂直于同一条直线的两条直线互相平行, 原命题正确,是真命题,符合题意; D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意; 故选:C. 【点睛】 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理. 5.A 【分析】 过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可. 【详解】 如图,过三角板60°角的顶点作直线EF∥AB, ∵AB∥CD, ∴EF∥CD, ∴∠3=∠1,∠4=∠2, ∵∠3+∠4=60°, ∴∠1+∠2=60°, ∵∠1=25°, ∴∠2=35°, 故选A. 【点睛】 本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键. 6.A 【分析】 根据算术平方根以及立方根的概念逐一进行凑数即可得. 【详解】 A.0的立方根是0,正确,符合题意; B.0.25的算术平方根是0.5,故B选项错误,不符合题意; C.-1000的立方根是-10,故C选项错误,不符合题意; D.的算术平方根是,故D选项错误,不符合题意, 故选A. 【点睛】 本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键. 7.D 【分析】 由可得到与的关系,利用三角形的外角与内角的关系可得结论. 【详解】 解:,, . ,, . 故选:. 【点睛】 本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键. 8.B 【分析】 观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,10 解析:B 【分析】 观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,1010). 【详解】 ∵ ∴ 故选B. 【点睛】 本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键. 九、填空题 9.【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 解析: 【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 十、填空题 10.(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要 解析:(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键. 十一、填空题 11.【分析】 如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案. 【详解】 解:如图,∵∠B=40°,∴∠ 解析:【分析】 如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案. 【详解】 解:如图,∵∠B=40°,∴∠1+∠2=180°-∠B=140°, ∴∠DAC+∠ACF=360°-∠1-∠2=220°, ∵AE和CE分别是和的角平分线, ∴, ∴, ∴. 故答案为:70. 【点睛】 本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键. 十二、填空题 12.68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF 解析:68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF=∠DEF=56°, ∴∠DEG=112°, ∴∠AEG=180°-112°=68°. 故答案为:68°. 【点睛】 本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等. 十三、填空题 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 十四、填空题 14.±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平 解析:±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键. 十五、填空题 15.(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0), 解析:(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0),B(2,0), ∴AB=2-1=1, ∴△ABC的面积=×1•h=2, 解得h=4, 点C在y轴正半轴时,点C为(0,4), 点C在y轴负半轴时,点C为(0,-4), 所以,点C的坐标为(0,4)或(0,-4). 故答案为:(0,4)或(0,-4). 【点睛】 本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键. 十六、填空题 16.(34,0) 【分析】 本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案. 【详解】 解:∵A1(0,1)、A2(1,1)、A3(1,0)、A 解析:(34,0) 【分析】 本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案. 【详解】 解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…, ∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上, 故A100坐标为(34,0), 故答案为:(34,0) 【点睛】 本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律. 十七、解答题 17.(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, = 解析:(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, =3+1-6, =–2. 【点睛】 本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 十八、解答题 18.(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , 解析:(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , ; (2), , , 解得:. 【点睛】 此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键. 十九、解答题 19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补 【分析】 先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等 解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补 【分析】 先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定. 【详解】 解:∵AD⊥BC,EF⊥BC(已知), ∴∠EFB=90°,∠ADB=90°(垂直的定义), ∴∠EFB=∠ADB(等量代换), ∴EFAD(同位角相等,两直线平行), ∴∠1=∠BAD(两直线平行,同位角相等), 又∵∠1=∠2(已知), ∴∠2=∠BAD(等量代换), ∴DGBA(内错角相等,两直线平行), ∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补). 故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补 【点睛】 本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键. 二十、解答题 20.(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行 解析:(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, . 【详解】 解:(1)依题意得:,,; (2)∵, ∴, ∴; (3)∵, ∴, ∵,分别平分,, ∴ , 过点作, 则,, ∴. 【点睛】 本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键. 二十一、解答题 21.(1)2,;(2). 【分析】 (1)利用求解; (2)由于,则,,然后计算. 【详解】 解:(1)的整数部分是2,小数部分是; (2), 而整数部分是,小数部分是, ,, . 【点睛】 本题考查了 解析:(1)2,;(2). 【分析】 (1)利用求解; (2)由于,则,,然后计算. 【详解】 解:(1)的整数部分是2,小数部分是; (2), 而整数部分是,小数部分是, ,, . 【点睛】 本题考查了估算无理数的大小,熟悉相关性质是解题得关键. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论 解析:(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案. 【详解】 解:(1)作PQ∥EF,如图: ∵, ∴, ∴,, ∵ ∴; (2)①; 理由如下:如图, 过作交于, ∵, ∴, ∴,, ∴; ②当点在延长线时,如备用图1: ∵PE∥AD∥BC, ∴∠EPC=,∠EPD=, ∴; 当在之间时,如备用图2: ∵PE∥AD∥BC, ∴∠EPD=,∠CPE=, ∴. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系. 二十四、解答题 24.[探究] 70°;[应用] 35 【分析】 [探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数. [应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线 解析:[探究] 70°;[应用] 35 【分析】 [探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数. [应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数. 【详解】 解:[探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠PFC=∠MPF=120°(两直线平行,内错角相等). ∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质). 答:∠EPF的度数为70°; [应用]如图③所示, ∵EG是∠PEA的平分线,PG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-MGE=60°-25°=35°. 答:∠G的度数是35°. 故答案为:35. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学 年级 下册 数学 期末 复习 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文