初二上册期末数学质量检测试卷带解析(一).doc
《初二上册期末数学质量检测试卷带解析(一).doc》由会员分享,可在线阅读,更多相关《初二上册期末数学质量检测试卷带解析(一).doc(21页珍藏版)》请在咨信网上搜索。
初二上册期末数学质量检测试卷带解析(一) 一、选择题 1.下列图形中,不是轴对称图形的是( ) A. B. C. D. 2.科技不断发展,晶体管长度越造越短,长度只有0.000000006米的晶体管已经诞生,该数用科学记数法表示为( )米. A. B. C. D. 3.下列运算:(1);(2);(3);(4).其中错误的个数是( ) A.1个 B.2个 C.3个 D.4个 4.有这样一道题“先化简,再从﹣2,﹣1,0,1四个数中选择一个你认为合适的数作为x的值代入求值.”这道题中x应取的值为( ) A.﹣2 B.﹣1 C.0 D.1 5.下列从左到右的变形是因式分解的是( ) A. B. C. D. 6.下列各式从左到右的变形,不正确的是( ) A. B. C. D. 7.如图,等腰△ABC中,AB=AC,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( ) A.AE =AD B.∠AEB=∠ADC C.BE =CD D.∠EBC=∠DCB 8.已知关于的分式方程的解为正数,则的取值范围是( ) A. B.且 C. D.且 9.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( ) A. B. C. D. 10.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DEAC交AB于点E,若AB=8,则DE的长度是( ) A.6 B.2 C.3 D.4 二、填空题 11.已知分式,当x取a时,该分式的值为0;当x取b时,分式无意义,则ab的值等于 _____. 12.在平面直角坐标系中,作点关于轴的对称点,得到点,再将点向右平移3个单位,得到点,则点的坐标为__________. 13.若,则____. 14.计算:(﹣0.25)2021×42022=_____. 15.如图,直线,、分别为直线、上一点,且满足,是射线上的一个动点(不包括端点),将三角形沿折叠,使顶点落在点处.若,则的度数为______. 16.若是关于x的完全平方式,则________. 17.如图,在四边形ABCD中,点F在BC的延长线上,∠ABC的平分线和∠DCF的平分线交于点E,若∠A+∠D=224°,则∠E=______. 18.如图,,,点和点分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,点和点运动速度之比为,运动到某时刻点和点同时停止运动,在射线上取一点,使与全等,则的长为___________. 三、解答题 19.(1)计算: (2)因式分解: 20.先化简再求值:,其中,. 21.如图,、.求证:. 22.某同学在学习过程中,对教材的一个有趣的问题做如下探究: 【习题回顾】 已知:如图1,在△ABC中,角平分线BO、CO交于点O.求∠BOC的度数. (1)若∠A=40º,请直接写出∠BOC=________; (2)【变式思考】若∠A=α,请猜想与的关系,并说明理由; (3)【拓展延伸】已知:如图2,在△ABC中,角平分线BO、CO交于点O,OD⊥OB,交边BC于点D,作∠ABE的平分线交CO的延长线于点F.若∠F=β,猜想∠BAC与β的关系,并说明理由. 23.4月23日是“世界读书日”,梅州某学校为了更好地营造读书好、好读书、读好书的书香校园.学校图书馆决定去选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元? (2)如果学校图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该学校图书馆最多可以购买甲和乙图书共多少本? 24.乘法公式的探究及应用. 数学活动课上,刘老师准备了若干个如图的三种纸片,种纸片边长为的正方形,种纸片是边长为的正方形,种纸片长为、宽为的长方形并用种纸片一张,种纸片一张,种纸片两张拼成如图的大正方形. (1)观察图,请写出下列三个代数式:,,之间的等量关系____; (2)若要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片_____张. (3)根据(1)题中的等量关系,解决如下问题: ①已知:,,求的值: ②已知.求的值. 25.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限. (1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________; (2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF; (3)试探究(2)中OD,OE与DF之间的关系,并说明理由. 26.如图,是等边三角形,点在上,点在的延长线上,且. (1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论. (3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由. 【参考答案】 一、选择题 2.A 解析:A 【分析】根据轴对称图形的性质逐一判断即可. 【详解】解:A、不是轴对称图形,故本选项符合题意; B、是轴对称图形,故本选项不符合题意; C、是轴对称图形,故本选项不符合题意; D、是轴对称图形,故本选项不符合题意. 故选:A 【点睛】本题考查轴对称图形,能准确识别轴对称图形是解题的关键. 3.D 解析:D 【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可. 【详解】解:由题意知:0.000000006=, 故选:D. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键. 4.D 解析:D 【分析】根据合并同类项、同底数幂的乘法运算法则来求解. 【详解】(1),原选项计算错误,此项符合题意; (2),原选项计算错误,此项符合题意; (3),原选项计算错误,此项符合题意; (4),原选项计算错误,此项符合题意, 综上所述,错误的有4个. 故选:D. 【点睛】本题主要考查了合并同类项、同底数幂的乘法,理解合并同类项和同底数幂乘法的运算法则是解答关键. 5.A 解析:A 【分析】根据分式有意义的条件,即可求解. 【详解】解:根据题意得:, ∴x不能取-1,0,1, ∴x应取-2. 故选:A 【点睛】本题主要考查了分式的化简求值,熟练掌握分式有意义的条件是解题的关键. 6.C 解析:C 【分析】直接利用因式分解的定义分别分析得出即可. 【详解】解:A.(x+2)(x-2)=x2-4,是整式的乘法运算,不符合因式分解的定义,故此选项不符合题意; B.(a+3)(a+7)=a2+10a+21,是整式的乘法运算,且运算错误,不符合因式分解的定义,故此选项不符合题意; C. 符合因式分解的定义,故此选项符合题意; D.3x3-6x+4≠3x2(x-2),故此选项不符合题意. 故选:C. 【点睛】此题主要考查了因式分解的定义,正确把握因式分解的定义是解题关键.分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式. 7.D 解析:D 【分析】根据分式的基本性质进行求解判断即可. 【详解】解:A、,变形正确,不符合题意; B、,变形正确,不符合题意; C、,变形正确,不符合题意; D、,变形错误,符合题意; 故选D 【点睛】本题主要考查了分式的变形,熟知分式的基本性质是解题的关键. 8.C 解析:C 【分析】根据判定三角形全等的条件逐一判断即可. 【详解】解:A.∵AB=AC,,AE =AD, ∴△ABE≌△ACD(SAS),故该选项不符合题意; B.∵∠AEB=∠ADC,AB=AC,, ∴△ABE≌△ACD(AAS),故该选项不符合题意; C.AB=AC,,BE =CD,不能证明△ABE≌△ACD,符合题意; D.∵, ∴, ∵∠EBC=∠DCB, ∴, 又∵AB=AC,, ∴,故该选项不符合题意, 故选:C 【点睛】本题考查了全等三角形的判定方法,熟练掌握全等三角形的判定方法是解题的关键. 9.D 解析:D 【分析】先解分式方程,令其分母不为零,再根据题意令分式方程的解大于等于0,综合得出m的取值范围. 【详解】解:根据题意解分式方程,得x=, ∵2x−1≠0, ∴x≠,即≠, 解得m≠−3, ∵x>0, ∴>0,解得m>−4, 综上,m的取值范围是m>−4且m≠−3, 故选:D. 【点睛】本题考查分式方程的解和解一元一次不等式,需要注意分式方程的解要使得分母不为0. 10.C 解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b)2 图中的阴影部分面积也可以表示为:a2-2ab+b2 可得:(a-b)2=a2-2ab+b2 故选:C 【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积 11.D 解析:D 【分析】分别延长AC、BD交于点F,根据角平分线的性质得到∠BAD=∠FAD,证明△BAD≌△FAD,根据全等三角形的性质得到BD=DF,根据平行线的性质得到BE=ED,EA=ED,进一步计算即可求解. 【详解】解:分别延长AC、BD交于点F, ∵AD平分∠BAC,AD⊥BD, ∴∠BAD=∠FAD,∠ADB=∠ADF=90°, 在△BAD和△FAD中,, ∴△BAD≌△FAD(ASA), ∴∠ABD=∠F, ∵DEAC, ∴∠EDB=∠F,∠EDA=∠FAD, ∴∠ABD=∠EDB,∠EDA=∠EAD, ∴BE=ED,EA=ED, ∴BE=EA=ED, ∴DE=AB=×8=4, 故选:D. 【点睛】本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定和性质是解题的关键. 二、填空题 12.1 【分析】先把x=a代入分式,根据分式值为0得出a+1=0,求出解得:a=﹣1时,该分式的值为0;把x=b代入分式,根据分式无意义,由分母为零,求出b=2,再求代数式的值即可. 【详解】解:分式, 当x=a时,, 当a+1=0时, 解得:a=﹣1时,该分式的值为0; 当x=b时,, 当2﹣b=0时, 解得:b=2, 即x=2时分式无意义,此时b=2, 则ab=(﹣1)2=1. 故答案为:1. 【点睛】本题考查分式,分式的值为0的条件,分式无意的条件,代数式的值,掌握分式,分式的值为0的条件,分式无意的条件,代数式的值是解题关键. 13.(-2,1) 【分析】设P点坐标为(x,y),根据关于轴对称的点的坐标特征和平移的方式可得(x+3,-y),从而可求出x和y的值,即得出P点坐标. 【详解】设P点坐标为(x,y), 根据关于轴对称的点的坐标特征可得(x,-y), 再根据点向右平移3个单位,得到点,则(x+3,-y), ∴x+3=1,-y=-1, 解得:x=-2, y=1, ∴点的坐标为(-2,1). 故答案为:(-2,1) 【点睛】本题考查关于坐标轴对称的点的坐标特点,点的平移.熟练掌握轴对称变换和平移的特点是解题关键. 14.3 【分析】由a+b-3ab=0得a+b. 【详解】解:由a+b-3ab=0得a+b=3ab, =3, 故答案为3. 【点睛】本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键. 15.﹣4 【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可. 【详解】解: . 故答案为:. 【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 16.72° 【分析】设∠PND=x,推出∠DNQ=∠PND=x,得到∠PNQ=x,根据AB∥CD,推出∠MPN=∠PND=x,根据折叠性质得到∠QPN=∠MPN=x,∠Q=∠BMN=54°,根据三角形 解析:72° 【分析】设∠PND=x,推出∠DNQ=∠PND=x,得到∠PNQ=x,根据AB∥CD,推出∠MPN=∠PND=x,根据折叠性质得到∠QPN=∠MPN=x,∠Q=∠BMN=54°,根据三角形内角和定理得到∠QPN+∠PNQ+∠Q=180°,推出x+x+54°=180°,得到x=72°,∠PND=72°. 【详解】设∠PND=x, 则∠DNQ=∠PND=x, ∴∠PNQ=∠PND-∠DHQ=x, ∵AB∥CD, ∴∠MPN=∠PND=x, 由折叠知,∠QPN=∠MPN=x,∠Q=∠BMN=54°, ∵∠QPN+∠PNQ+∠Q=180°, ∴x+x+54°=180°, ∴x=72°, 即∠PND=72°. 故答案为:72°. 【点睛】本题主要考查了平行线,折叠,三角形内角和,解决问题的关键是熟练掌握平行线性质,折叠性质,三角形内角和定理. 17.【分析】利用完全平方公式的结构特征判断即可确定出的值. 【详解】解:是关于的完全平方式, , 故答案为:. 【点睛】此题考查了完全平方式,解题的关键是熟练掌握完全平方公式. 解析: 【分析】利用完全平方公式的结构特征判断即可确定出的值. 【详解】解:是关于的完全平方式, , 故答案为:. 【点睛】此题考查了完全平方式,解题的关键是熟练掌握完全平方公式. 18.22°##22度 【分析】根据四边形内角和定理得到∠ABC+∠3=136°,利用角平分线的定义得到2∠1=∠ABC,2∠2=∠DCF,根据三角形的外角性质即可求解. 【详解】解:∵∠A+∠D=2 解析:22°##22度 【分析】根据四边形内角和定理得到∠ABC+∠3=136°,利用角平分线的定义得到2∠1=∠ABC,2∠2=∠DCF,根据三角形的外角性质即可求解. 【详解】解:∵∠A+∠D=224°,∠A+∠ABC+∠3+∠D=360°, ∴∠ABC+∠3=360°-224°=136°, ∠DCF+∠3=180°, ∵BE是∠ABC的平分线,CE是∠DCF的平分线, ∴2∠1=∠ABC,2∠2=∠DCF, ∴2∠1+∠3=136°,2∠2+∠3=180°, ∴2(∠2-∠1)=180°-136°=44°, ∴∠E=∠2-∠1=22°, 故答案为:22°. 【点睛】本题考查了四边形内角和定理,三角形的外角性质,角平分线的定义,熟记各图形的性质并准确识图是解题的关键. 19.60或32##32或60 【分析】根据题意,可以分两种情况进行讨论,第一种是△AEG≌△BEF,第二种是△AEG≌△BFE,然后根据全等三角形的性质和题目中的数据,即可计算出AG的长. 【详解】 解析:60或32##32或60 【分析】根据题意,可以分两种情况进行讨论,第一种是△AEG≌△BEF,第二种是△AEG≌△BFE,然后根据全等三角形的性质和题目中的数据,即可计算出AG的长. 【详解】解:当△AEG≌△BEF时,AE=BE,AG=BF, ∵AB=80, ∴AE=BE=40, ∵点E和点F运动速度之比为2:3, ∴, 解得BF=60; 当△AEG≌△BFE时,AE=BF,AG=BE, 设BE=2x,则BF=3x, ∴AE=3x, ∵AB=80,AB=AE+BE, ∴80=3x+2x, 解得x=16, ∴AG=BE=2x=32; 由上可得,AG的长为60或32, 故答案为:60或32. 【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用分类讨论和数形结合的思想解答. 三、解答题 20.(1) (2) 【分析】(1)原式利用平方差公式计算即可; (2)原式变形后,先提取公因式,再利用平方差公式分解因式即可. 【详解】解:(1)原式= (2)原式= = 【点睛】本题 解析:(1) (2) 【分析】(1)原式利用平方差公式计算即可; (2)原式变形后,先提取公因式,再利用平方差公式分解因式即可. 【详解】解:(1)原式= (2)原式= = 【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握平方差公式是解决本题的关键. 2【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a,b的值代入计算可得. 【详解】解:原式 ; 当a=2,b=-1时, 原式. 【点睛】本题主要考查分式的化简求值,解题的关 解析: 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a,b的值代入计算可得. 【详解】解:原式 ; 当a=2,b=-1时, 原式. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.见解析 【分析】、,再加上公共边即可正面两个三角形全等. 【详解】证明:在和中 ∴ ∴ 【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键. 解析:见解析 【分析】、,再加上公共边即可正面两个三角形全等. 【详解】证明:在和中 ∴ ∴ 【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键. 23.(1)110° (2),理由见解析 (3),理由见解析 【分析】(1)利用三角形内角和和角平分线性质,可求得角度; (2)将定角转化为动角,利用三角形内角和和角平分线性质,可求得角度的关系; 解析:(1)110° (2),理由见解析 (3),理由见解析 【分析】(1)利用三角形内角和和角平分线性质,可求得角度; (2)将定角转化为动角,利用三角形内角和和角平分线性质,可求得角度的关系; (3)在(2)的基础结论上,通过角平分线性质可求证FB∥OD,然后角的关系就能够表示出来. (1) ∵, ∴, ∵角平分线、分别平分、, ∴,, ∴, 在中, 故答案为:110°, (2) ∵, ∴, ∵、是角平分线, ∴, ∴, (3) 由图可知 ∵, ∴, ∴, ∴, ∴, ∴. 【点睛】此题考查了双角平分线模型,利用三角形内角和定理以及角平分线性质,推理出各个角之间的关系是本题的关键. 24.(1)甲图书每本价格是50元,乙图书每本价格为20元 (2)该学校图书馆最多可以购买甲和乙图书共38本 【分析】(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,由题意:用800元单独 解析:(1)甲图书每本价格是50元,乙图书每本价格为20元 (2)该学校图书馆最多可以购买甲和乙图书共38本 【分析】(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,由题意:用800元单独购买甲图书比用800元单独购买乙图书要少24本,列出分式方程,解方程即可; (2)设购买甲种图书a本,则购买乙种图书(2a+8)本,由题意:用于购买甲、乙两种图书的总经费不超过1060元,列出一元一次不等式,解不等式,进而得出结论. (1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意得:, 解得:x=20, 经检验:x=20是原方程的根, 则2.5x=50, 答:甲图书每本价格是50元,乙图书每本价格为20元; (2)设购买甲种图书a本,则购买乙种图书(2a+8)本,由题意得:50a+20(2a+8)≤1060, 解得:a≤10, ∴2a+8≤28, 则10+28=38,答:该学校图书馆最多可以购买甲和乙图书共38本. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)3;(3)①11;②1 【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形=(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b 解析:(1);(2)3;(3)①11;②1 【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形=(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b的正方形以及2个长为b宽为a的长方形的组合体,根据正方形及长方形的面积公式可得出S正方形=a2+2ab+b2;由图2中的图形面积不变,可得出(a+b)2=a2+2ab+b2; (2)把括号打开,根据各项的系数就可判断卡片的张数; (3)①由a+b=6可得出(a+b)2=36,将其和a2+b2=14代入(a+b)2=a2+2ab+b2中即可求出ab的值; ②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,再根据完全平方公式求解即可. 【详解】解:(1)方法:图是边长为的正方形, ; 方法:图可看成个边长为的正方形、个边长为的正方形以及个长为宽为的长方形的组合体, . . 故答案为:; (2)∵,A卡片的面积为a2,B卡片的面积为b2,C卡片的面积为ab,根据各项系数可得,要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片张. 故答案为:. (3)①, ,即, 又, . ②设,则,, , , , , , ,即. 【点睛】本题考查了完全平方公式的几何背景、正方形的面积以及长方形的面积,解题的关键是:利用长方形、正方形的面积公式,找出结论;根据面积不变,找出(a+b)2=a2+2ab+b2. 26.(1),;C(8,4); (2)证明见解析; (3),理由见解析. 【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D, 证明,进一步可求出点C坐标; (2)利用已知证明,,再证 解析:(1),;C(8,4); (2)证明见解析; (3),理由见解析. 【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D, 证明,进一步可求出点C坐标; (2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF; (3)证明得到,,又由(2)可知,进一步可得. (1) 解:∵,即:, ∴,, 作轴交于点D, ∵,, ∴, 在和中, ∴, ∴,, ∴,即. (2) 证明:∵,BE平分, ∴,, 在和中, ∴, ∴,, ∵, ∴, ∴, ∴, ∴, 在和中, ∴, ∴,即CG垂直平分EF. (3) 解:,理由如下: ∵, , ∴, 在和中, ∴, ∴,, ∵, ∴, 又由(2)可知, ∴,即. 【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键. 27.(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F, 解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案. (3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE. 【详解】证明:是等边三角形, 为中点, ,, ; (2)成立, 如图乙,过作,交于, 则是等边三角形, , , ,, 在和中 , 即 如图3,过点作,交的延长线于点, 是等边三角形,也是等边三角形, , , 在和中, 【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 期末 数学 质量 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文