人教版七年级下册数学期末测试题(含答案).doc
《人教版七年级下册数学期末测试题(含答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末测试题(含答案).doc(24页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末测试题(含答案) 一、选择题 1.的算术平方根是() A.3 B.﹣3 C.﹣9 D.9 2.下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( ) A. B. C. D. 3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( ) A.点在第一象限 B.点的横坐标是 C.点到轴的距离是 D.以上都不对 4.下列命题中,是假命题的是( ) A.两条直线被第三条直线所截,同位角相等 B.同旁内角互补,两直线平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 5.如图,点E在BA的延长线上,能证明BE∥CD是( ) A.∠EAD=∠B B.∠BAD=∠BCD C.∠EAD=∠ADC D.∠BCD+∠D=180° 6.下列说法错误的是( ) A.-8的立方根是-2 B. C.的相反数是 D.3的平方根是 7.如图,已知,平分,,则的度数是( ) A. B. C. D. 8.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2021的坐标为( ) A.(-3,3) B.(-2,2) C.(3,-1) D.(2,4) 九、填空题 9.若=0,则=________ . 十、填空题 10.在平面直角坐标系中,点与点关于轴对称,则的值是_____. 十一、填空题 11.如图,已知在四边形ABCD中,∠A=α,∠C=β,BF,DP为四边形ABCD的∠ABC、∠ADC相邻外角的角平分线.当α、β满足条件____________时,BF∥DP. 十二、填空题 12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______. 十三、填空题 13.把一张对边互相平行的纸条折成如图所示,是折痕,若,则______. 十四、填空题 14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____. 十五、填空题 15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 ____________ 十六、填空题 16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________. 十七、解答题 17.计算下列各式的值: (1) (2) 十八、解答题 18.求下列各式中的值: (1); (2). 十九、解答题 19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°. 请在括号内填写出证明依据. 证明:∵∠B=∠CGF(已知), ∴AB∥CD( ). ∵∠DGF=∠F(已知), ∴ //EF( ). ∴AB//EF( ). ∴∠B+∠F=180°( ). 二十、解答题 20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,. (1)将向右平移4个单位长度得到,画出平移后的; (2)将向下平移5个单位长度得到,画出平移后的; (3)直接写出三角形的面积为______平方单位.(直接写出结果) 二十一、解答题 21.阅读下面文字,然后回答问题. 给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,. (1)如果,其中是整数,且,那么______,_______; (2)如果,其中是整数,且,那么______,______; (3)已知,其中是整数,且,求的值; (4)在上述条件下,求的立方根. 二十二、解答题 22.有一块正方形钢板,面积为16平方米. (1)求正方形钢板的边长. (2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,). 二十三、解答题 23.综合与实践 背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础. 已知:AM∥CN,点B为平面内一点,AB⊥BC于B. 问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= . 二十四、解答题 24.问题情境 (1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________. 问题迁移 (2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,. ①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系; ②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸 (3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系. 二十五、解答题 25.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 【参考答案】 一、选择题 1.A 解析:A 【分析】 先计算,再计算的算术平方根即可. 【详解】 ,的算术平方根为 故选A 【点睛】 本题考查了求一个数的算术平方根,先计算是解题的关键. 2.B 【分析】 根据平移的概念观察即可 【详解】 解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】 本题考查 解析:B 【分析】 根据平移的概念观察即可 【详解】 解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】 本题考查平移的概念,考查观察能力 3.C 【分析】 根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可. 【详解】 解:A、−1<0,2>0,点在第二象限,原说法错误,该选项不符合题意; B、点的横坐标是−1,原说法错误,该选项不符合题意; C、点到y轴的距离是1,该选项正确,符合题意; D、以上都不对,说法错误,该选项不符合题意; 故选:C. 【点睛】 本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键. 4.A 【分析】 根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解. 【详解】 解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意; B. 同旁内角互补,两直线平行,真命题,不符合题意; C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意; D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意; 故选A. 【点睛】 本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键. 5.C 【分析】 根据平行线的判定定理对四个选项进行逐一判断即可. 【详解】 解:A、若∠EAD=∠B,则AD∥BC,故此选项错误; B、若∠BAD=∠BCD,不可能得到BE∥CD,故此选项错误; C、若∠EAD=∠ADC,可得到BE∥CD,故此选项正确; D、若∠BCD+∠D=180°,则BC∥AD,故此选项错误. 故选:C. 【点睛】 本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键. 6.B 【分析】 根据平方根以及立方根的概念进行判断即可. 【详解】 A、-8的立方根为-2,这个说法正确; B、|1-|=-1,这个说法错误; C.-的相反数是,这个说法正确; D、3的平方根是±,这个说法正确; 故选B. 【点睛】 本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根. 7.B 【分析】 利用平行线的性质,角平分线的定义即可解决问题. 【详解】 解:∵,,平分, ∴,, ∵, ∴, 故选:B. 【点睛】 本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.D 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴ 解析:D 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505……1, ∴点A2021的坐标与A1的坐标相同,为(2,4). 故选:D. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 九、填空题 9.9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 解析:9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 十、填空题 10.4 【分析】 根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案. 【详解】 点与点关于轴对称, ,, 则a+b的值是:, 故答案为. 【点睛】 本题考查了关于x轴对称的 解析:4 【分析】 根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案. 【详解】 点与点关于轴对称, ,, 则a+b的值是:, 故答案为. 【点睛】 本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键. 十一、填空题 11.α=β 【详解】 试题解析: 当BF∥DP时, 即: 整理得: 故答案为 解析:α=β 【详解】 试题解析: 当BF∥DP时, 即: 整理得: 故答案为 十二、填空题 12.【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三 解析: 【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 十三、填空题 13.【分析】 需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解. 【详解】 , , 是折痕,折叠后,, , , , 故答案为:. 【点睛】 本题考查了平行 解析: 【分析】 需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解. 【详解】 , , 是折痕,折叠后,, , , , 故答案为:. 【点睛】 本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想. 十四、填空题 14.﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b 解析:﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b. 故答案为:﹣2a﹣b. 【点睛】 此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键. 十五、填空题 15.或 【分析】 已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标. 【详解】 ∵ ∴AB=8 ∵的面积为 ∴=16 ∴OC=4 ∴点的坐标为(0,4)或(0,-4) 故答案为:(0,4) 解析:或 【分析】 已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标. 【详解】 ∵ ∴AB=8 ∵的面积为 ∴=16 ∴OC=4 ∴点的坐标为(0,4)或(0,-4) 故答案为:(0,4)或(0,-4) 【点睛】 本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 十六、填空题 16.(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解 解析:(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解】 解:观察发现,每6个点形成一个循环, ∵A6(6,0), ∴OA6=6, ∵2021÷6=336…5, ∴点A2021的位于第337个循环组的第5个, ∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2, ∴点A2021的坐标为(2021,﹣2). 故答案为:(2021,﹣2). 【点睛】 此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解. 十七、解答题 17.(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考 解析:(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 十八、解答题 18.(1);(2) 【分析】 (1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解; (2)方程整理后,将一个数开立方后,只得到一个解. 【详解】 解:(1)移项得,, 解析:(1);(2) 【分析】 (1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解; (2)方程整理后,将一个数开立方后,只得到一个解. 【详解】 解:(1)移项得,, 开方得,; (2)移项得,, 合并同类项得,, 开立方得,. 【点睛】 此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 十九、解答题 19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补 【分析】 根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF 解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补 【分析】 根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可. 【详解】 证明:∵∠B=∠CGF(已知), ∴AB∥CD(同位角相等,两直线平行), ∵∠DGF=∠F(已知 ), ∴CD∥EF(内错角相等,两直线平行), ∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ), ∴∠B+∠F=180°(两直线平行,同旁内角互补), 故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补. 【点睛】 本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应 解析:(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积. 【详解】 解:(1)平移后的三角形如下图所示; (2)平移后的三角形如下图所示; (3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积, ∴S△ABC . 【点睛】 本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差. 二十一、解答题 21.(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小, 解析:(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小,分别求得的值,再代入绝对值中计算即可; (4)根据前三问的结果,代入代数式求值,最后求立方根即可. 【详解】 (1), , , , 故答案为:2,,; (2) , , , 故答案为:﹣3,; (3), , , , ,, ; (4), , 27的立方根为3, 即的立方根为3. 【点睛】 本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题 22.(1)4米 (2)见解析 【分析】 (1)根据正方形边长与面积间的关系求解即可; (2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论. 【详解】 解 解析:(1)4米 (2)见解析 【分析】 (1)根据正方形边长与面积间的关系求解即可; (2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论. 【详解】 解:(1)正方形的面积是16平方米, 正方形钢板的边长是米; (2)设长方形的长宽分别为米、米, 则, , , ,, 长方形长是米,而正方形的边长为4米,所以李师傅不能办到. 【点睛】 本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键. 二十三、解答题 23.(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质 解析:(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】 解:(1)如图1,设AM与BC交于点O,∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠ABC=90°, ∴∠A+∠AOB=90°, ∠A+∠C=90°, 故答案为:∠A+∠C=90°; (2)证明:如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 故答案为:105°. 【点睛】 本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 二十四、解答题 24.(1);(2)①,②,理由见解析;(3) 【分析】 (1)过点作,则,由平行线的性质可得的度数; (2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即 解析:(1);(2)①,②,理由见解析;(3) 【分析】 (1)过点作,则,由平行线的性质可得的度数; (2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即可得到; (3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为. 【详解】 解:(1)如图1,过点作,则, 由平行线的性质可得,, 又∵,, ∴, 故答案为:; (2)①如图2,与,之间的数量关系为; 过点P作PM∥FD,则PM∥FD∥CG, ∵PM∥FD, ∴∠1=∠α, ∵PM∥CG, ∴∠2=∠β, ∴∠1+∠2=∠α+∠β, 即:, ②如图,与,之间的数量关系为;理由: 过作, ∵, ∴, ∴,, ∴; (3)如图, 由①可知,∠N=∠3+∠4, ∵EN平分∠DEP,AN平分∠PAC, ∴∠3=∠α,∠4=∠β, ∴, ∴与,之间的数量关系为. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 二十五、解答题 25.(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平 解析:(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数; (3)根据规律直接计算即可. 【详解】 解:(1)∵∠A=40°, ∴∠ABC+∠ACB=140°, ∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点, ∴∠OBC+∠OCB=70°, ∴∠BOC=110°. (2)∵∠A=n°, ∴∠ABC+∠ACB=180°-n°, ∵BO、CO分别是∠ABC与∠ACB的角平分线, ∴∠OBC+∠OCB=∠ABC+∠ACB =(∠ABC+∠ACB) =(180°﹣n°) =90°﹣n°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°. 故答案为:(90+n); (3)由(2)得∠O=90°+n°, ∵∠ABO的平分线与∠ACO的平分线交于点O1, ∴∠O1BC=∠ABC,∠O1CB=∠ACB, ∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°, 同理,∠O2=×180°+n°, ∴∠On=×180°+ n°, ∴∠O2017=×180°+n°, 故答案为:×90°+n°. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文