人教版七7年级下册数学期末解答题压轴题题(1).doc
《人教版七7年级下册数学期末解答题压轴题题(1).doc》由会员分享,可在线阅读,更多相关《人教版七7年级下册数学期末解答题压轴题题(1).doc(37页珍藏版)》请在咨信网上搜索。
人教版七7年级下册数学期末解答题压轴题题(1) 一、解答题 1.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为? 2.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 3.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 4.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二、解答题 6.已知,AB∥DE,点C在AB上方,连接BC、CD. (1)如图1,求证:∠BCD+∠CDE=∠ABC; (2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系; (3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值. 7.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 8.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 9.已知AB∥CD,线段EF分别与AB,CD相交于点E,F. (1)请在横线上填上合适的内容,完成下面的解答: 如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数; 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是 ; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是 ; 所以∠C=( ), 所以∠APC=( )+( )=∠A+∠C=97°. (2)当点P,Q在线段EF上移动时(不包括E,F两点): ①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由; ②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系. 10.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 三、解答题 11.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且. (1)将直角如图1位置摆放,如果,则________; (2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论. 12.[感知]如图①,,求的度数. 小乐想到了以下方法,请帮忙完成推理过程. 解:(1)如图①,过点P作. ∴(_____________), ∴, ∴________(平行于同一条直线的两直线平行), ∴_____________(两直线平行,同旁内角互补), ∴, ∴, ∴,即. [探究]如图②,,求的度数; [应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º. (2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示). 13.阅读下面材料: 小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数. 她是这样做的: 过点作 则有 因为 所以① 所以 所以 即_ ; 1.小颖求得的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题: 已知:直线点在直线上,点在直线上,连接平分平分且所在的直线交于点. (1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示). (2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示). 14.如图1,E点在BC上,∠A=∠D,AB∥CD. (1)直接写出∠ACB和∠BED的数量关系 ; (2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E; (3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由. 15.课题学习:平行线的“等角转化”功能. 阅读理解: 如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数. (1)阅读并补充下面推理过程 解:过点A作ED∥BC, ∴∠B=∠EAB,∠C= 又∵∠EAB+∠BAC+∠DAC=180° ∴∠B+∠BAC+∠C=180° 解题反思: 从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决. 方法运用: (2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB) 深化拓展: (3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数. 四、解答题 16.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 17.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 18.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 19.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题: (1)仔细观察,在图2中有 个以线段AC为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P的度数; (3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 . 20.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 【参考答案】 一、解答题 1.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据 解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形. 【详解】 (1)∵用两个面积为的小正方形拼成一个大的正方形, ∴大正方形的面积为400, ∴大正方形的边长为 故答案为:20cm; (2)设长方形纸片的长为,宽为, , 解得:, , 答:不能剪出长宽之比为5:4,且面积为的大长方形. 【点睛】 此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 2.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 3.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 4.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 5.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二、解答题 6.(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质 解析:(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论; (3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案. 【详解】 证明:(1)如图,过点作, , , , ,即, , ; (2)如图,过点作, , , , ,即, , , , , ; (3)如图,过点作,延长至点, , , , , 平分,平分, , 由(2)可知,, , 又, . 【点睛】 本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 7.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 8.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 9.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 【分析】 (1)根据平行线的判定与性质即可完成填空; (2)结合(1)的辅助线方法即可完成证明; (3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系. 【详解】 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是两直线平行,内错角相等; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是平行于同一条直线的两条直线平行; 所以∠C=(∠CPH), 所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°. 故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH; (2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下: 过点P作直线PH∥AB,QG∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°, ∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°. ∴∠APQ+∠PQC=∠A+∠C+180°成立; ②如图3, 过点P作直线PH∥AB,QG∥AB,MN∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG∥MN, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN, ∴∠PMQ=∠HPM+∠GQM, ∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°, ∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ), ∴3∠PMQ+∠A+∠C=360°. 【点睛】 考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键. 10.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据 解析:(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 三、解答题 11.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N 解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°. (3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解. 【详解】 解:(1)如图,作CP//a, ∵a//b,CP//a, ∴CP//a//b, ∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°, ∴∠BCP=180°-∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°-∠CEF=90°, ∴∠CEF=180°-90°+∠AOG=146°. (2)∠AOG+∠NEF=90°.理由如下: 如图,作CP//a,则CP//a//b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∵∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°. (3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF, ∵∠GOC=∠GOP+∠POQ=135°, ∴∠GOP=135°-∠POQ, ∴∠OPQ=135°-∠POQ+∠PQF. 如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴135°-∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解. 12.[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; 解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; [探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数; [应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数; (2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解. 【详解】 解:[感知]如图①,过点P作PM∥AB, ∴∠1=∠AEP=40°(两直线平行,内错角相等) ∵AB∥CD, ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠2+∠PFD=180°(两直线平行,同旁内角互补), ∴∠PFD=130°(已知), ∴∠2=180°-130°=50°, ∴∠1+∠2=40°+50°=90°,即∠EPF=90°; [探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°, ∵AB∥CD, ∴PM∥CD, ∴∠PFC=∠MPF=120°, ∴∠EPF=∠MPF-∠MPE=120°-50°=70°; [应用](1)如图③所示, ∵EG是∠PEA的平分线,FG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-∠MGE=60°-25°=35°. 故答案为:35. (2)当点A在点B左侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵平分平分,, ∴∠ABE=∠BEF=,∠CDE=∠DEF=, ∴∠BED=∠BEF+∠DEF=; 当点A在点B右侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠DEF=∠CDE,∠ABG=∠BEF, ∵平分平分,, ∴∠DEF=∠CDE=,∠ABG=∠BEF=, ∴∠BED=∠DEF-∠BEF=; 综上:∠BED的度数为或. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质. 13.;2.平行于同一条直线的两条直线平行;3.(1);(2). 【分析】 1、根据角度和计算得到答案; 2、根据平行线的推论解答; 3、(1)根据角平分线的性质及1的结论证明即可得到答案; (2)根据B 解析:;2.平行于同一条直线的两条直线平行;3.(1);(2). 【分析】 1、根据角度和计算得到答案; 2、根据平行线的推论解答; 3、(1)根据角平分线的性质及1的结论证明即可得到答案; (2)根据BE平分平分求出,过点E作EF∥AB,根据平行线的性质求出∠BEF=,,再利用周角求出答案. 【详解】 1、过点作 则有 因为 所以① 所以 所以 即; 故答案为:; 2、过点作 则有 因为 所以EF∥CD(平行于同一条直线的两条直线平行), 故答案为:平行于同一条直线的两条直线平行; 3、(1)∵BE平分平分 ∴, 过点E作EF∥AB,由1可得∠BED=, ∴∠BED=, 故答案为:; (2)∵BE平分平分 ∴, 过点E作EF∥AB,则∠ABE=∠BEF=, ∵ ∴EF∥CD, ∴, ∴, ∴. 【点睛】 此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键. 14.(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A 解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论; (2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数; (3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数. 【详解】 解:(1)如图1,延长交于点, , , , , , , , 故答案为:; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , , 解得. 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 15.(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; 解析:(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; (3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数. 【详解】 解:(1)过点A作ED∥BC, ∴∠B=∠EAB,∠C=∠DCA, 又∵∠EAB+∠BAC+∠DAC=180°, ∴∠B+∠BAC+∠C=180°. 故答案为:∠DAC; (2)过C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠D=∠FCD, ∵CF∥AB, ∴∠B=∠BCF, ∵∠BCF+∠BCD+∠DCF=360°, ∴∠B+∠BCD+∠D=360°; (3)如图3,过点E作EF∥AB, ∵AB∥CD, ∴AB∥CD∥EF, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°, ∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°, ∴∠BED=∠BEF+∠DEF=30°+35°=65°. 【点睛】 此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 四、解答题 16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, ,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 解答 压轴
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文