单纯形法的解题步骤.doc
《单纯形法的解题步骤.doc》由会员分享,可在线阅读,更多相关《单纯形法的解题步骤.doc(7页珍藏版)》请在咨信网上搜索。
1、三、单纯形法的解题步骤 第一步:作单纯形表.(1) (1)把原线性规划问题化为标准形式;(2) (2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;(3) (3)目标函数非基化;(4) (4)作初始单纯形表.第二步:最优解的判定.(1) 若所有检验数都是非正数,即 , 则此时线性规划问题已取得最优解.(2) 若存在某个检验数是正数,即 ,而所对应的列向量无正分量,则线性规划问题无最优解.如果以上两条都不满足,则进行下一步.第三步:换基迭代.(1)找到最大正检验数,设为 ,并确定 所在列的非基变量 为进基变量.(2)对最大正检验数 所在列实施最小比值法,确定出主元,并把主元加上小括号.主
2、元是最大正检验数 所在列,用常数项 与进基变量 所对应的列向量中正分量的比值 最小者;(3)换基:用进基变量 替换出基变量 ,从而得到新的基变量.也就是主元所在列的非基变量进基,所在行的基变量出基;(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.例3 求 . 解(1) 化标准型:令 ,引进松弛变量 ,其标准型为求 (2) 作单纯形表:在约束方程组系数矩阵中 的系数构成单位矩阵,故取 为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8). x 1
3、x2 x3 x4 x5 常数 x 3 x 4 x 5 1 0 1 0 0 1 2 0 1 0 0 (1) 0 0 1 5 10 4 S 1 3 0 0 0 0 x 3 x 4 x 2 1 0 1 0 0 (1) 0 0 1 -2 0 1 0 0 1 5 2 4 S 1 0 0 0 -3 -12 x 3 x 1 x 2 0 0 1 -1 2 1 0 0 1 -2 0 1 0 0 1 3 2 4 S 0 0 0 -1 -1 -14 表 6.8 (3) 最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为目标函数取得最优值 .原线性规划问题的最优解为: .目标函数的最优值为14,即 .
4、例4 用单纯形方法解线性规划问题.求 . 解 此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取 为基变量,而目标函数没有非基化.从约束方程找出, ,代入目标函数 ,经整理后,目标函数非基化了.作单纯形表,并进行换基迭代(见表6.9).最大检验数 ,由最小比值法知: 为主元,对主元所在列施以行初等变换,基变量 出基,非基变量 进基.表 6.9 x1 x2 x3 x4 常数 x3 x4 1 -1 1 0 -3 (1) 0 1 2 4 S 2 3 0 0 0 x3 x2 -2 0 1 1 -3 1 0 1 6 4 S 11 0 0 -3 12 目前最大检验数 ,
5、其所在列没有正分量,所以该线性规划问题没有最优解.例5用单纯形方法解线性规划问题.求 解 此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取 为基变量,而目标函数没有非基化.从约束方程找出, , 代入目标函数,经整理得 ,目标函数已非基化.作单纯形表,并进行换基迭代(见表6.10).最大检验数 ,由最小比值法知: 为主元,对主元所在列施以行初等变换,基变量 出基,非基变量x2进基,先将主元 化为1,然后再将主元所在列的其他元素化为零. 表 6.10 x 1 x2 x3 x4 常数 x 3 x 4 -2 (2) 1 0 3 1 0 1 4 6 S -2 2 0 0 10 x 2 x 4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单纯 解题 步骤
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。