2022年人教版中学七7年级下册数学期末测试(及答案).doc
《2022年人教版中学七7年级下册数学期末测试(及答案).doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末测试(及答案).doc(25页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末测试(及答案) 一、选择题 1.如图,下列各组角中是同位角的是( ) A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠4 2.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是( ) A. B. C. D. 3.若点在轴上,则点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题是真命题的是( ) A.两条直线被第三条直线所截,同位角相等 B.互补的两个角一定是邻补角 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.相等的角是对顶角 5.把一块直尺与一块含的直角三角板如图放置,若,则的度数为( ) A. B. C. D.124° 6.下列说法错误的是( ) A.3的平方根是 B.﹣1的立方根是﹣1 C.0.1是0.01的一个平方根 D.算术平方根是本身的数只有0和1 7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( ) A.90° B.75° C.65° D.60° 8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( ) A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0) 九、填空题 9.的算术平方根是__________. 十、填空题 10.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是_____. 十一、填空题 11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2 十二、填空题 12.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=105°,则∠AED的度数是_____. 十三、填空题 13.如图,在四边形ABCD纸片中,AD∥BC,AB∥CD.将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K.若∠CKF=35°,则∠A+∠GED=______°. 十四、填空题 14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____. 十五、填空题 15.已知点,轴,,则点C的坐标是______ . 十六、填空题 16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为 _____________. 十七、解答题 17.计算下列各题: (1); (2)-×; (3)-++. 十八、解答题 18.求下列各式中的值 (1) (2) 十九、解答题 19.完成下面的证明: 已知:如图, , 和相交于点, 平分,和相交于点,. 求证:. 证明:(已知), (______________), ________(两直线平行,同位角相等). 又(已知), ______(________) (等量代换) . 平分(已知) , _______(角平分线的定义). (_________). 二十、解答题 20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′, (1)画出△A′B′C′,写出A′、B′、C′的坐标; (2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标. 二十一、解答题 21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出1.4<<1.5.利用“逐步逼近“法,请回答下列问题: (1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= . (2)x是+2的小数部分,y是﹣1的整数部分,求x= ,y= . (3)(﹣x)y的平方根. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.已知,点在与之间. (1)图1中,试说明:; (2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:. (3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系. 二十四、解答题 24.如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足. (1)点的坐标为______;点的坐标为______. (2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束.的中点的坐标是,设运动时间为.问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由. (3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由. 二十五、解答题 25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角. 【详解】 A. ∠1和∠2是邻补角,不符合题意; B. ∠3和∠4是同旁内角,不符合题意; C. ∠2和∠4没有关系,不符合题意; D. ∠1和∠4是同位角,符合题意; 故选D. 【点睛】 本题考查了同位角的定义,理解同位角的定义是解题的关键. 2.C 【分析】 根据火柴头的方向、平移的定义即可得. 【详解】 解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下, 因为平移不改变火柴头的朝向, 所以观察四个选项可知,只有 解析:C 【分析】 根据火柴头的方向、平移的定义即可得. 【详解】 解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下, 因为平移不改变火柴头的朝向, 所以观察四个选项可知,只有选项C符合, 故选:C. 【点睛】 本题考查了平移,掌握理解平移的概念是解题关键. 3.D 【分析】 根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限. 【详解】 在轴上, , , 在第四象限, 故选D. 【点睛】 本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解. 4.C 【分析】 根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可. 【详解】 解:A、两条平行的直线被第三条直线所截,同位角相等, 原命题错误,是假命题,不符合题意; B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意; C、在同一平面内,垂直于同一条直线的两条直线互相平行, 原命题正确,是真命题,符合题意; D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意; 故选:C. 【点睛】 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理. 5.D 【分析】 根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】 解:由题意可知AD//BC,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC, ∴∠2=180°-∠AEF=124°, 故选:D. 【点睛】 本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.A 【分析】 根据平方根、立方根、算术平方根的概念进行判断即可. 【详解】 解:A、3的平方根是±,原说法错误,故此选项符合题意; B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意; C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意; D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意. 故选:A. 【点睛】 本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键. 7.B 【分析】 根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果. 【详解】 解:如图, ∵EF∥BC, ∴∠FDC=∠F=30°, ∴∠1=∠FDC+∠C=30°+45°=75°, 故选:B. 【点睛】 本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键. 8.C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度, ∴点P1秒走个半圆, 当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0), …, 可得移动4次图象完成一个循环, ∵2021÷4=505…1, ∴点P运动到2021秒时的坐标是(2021,1), 故选:C. 【点睛】 此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 九、填空题 9.【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m= 解析:1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m=2,n=-1, ∴(m+n)2020=(2-1)2020=1; 故答案为:1. 【点睛】 此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键. 十一、填空题 11.6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关 解析:6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关键. 十二、填空题 12.95°. 【分析】 延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解 解析:95°. 【分析】 延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】 解:如图,延长DE交AB于F, ∵AB∥CD, ∴∠B=180°﹣∠C=180°﹣105°=75°, ∵BC∥DE, ∴∠AFE=∠B=75°, 在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°, 故答案为:95°. 【点睛】 本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键. 十三、填空题 13.145 【分析】 首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解. 【详解】 解:∵AD∥BC,AB∥CD, ∴四边形ABCD是平行 解析:145 【分析】 首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解. 【详解】 解:∵AD∥BC,AB∥CD, ∴四边形ABCD是平行四边形, ∴∠A=∠C, 根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK, ∵AD∥BC, ∴∠DEF=∠EFB,∠AEF=∠EFC, ∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK, ∴∠GEF﹣∠DEF=∠EFC﹣∠EFK, ∴∠GED=∠CFK, ∵∠C+∠CFK+∠CKF=180°, ∴∠C+∠CFK=145°, ∴∠A+∠GED=145°, 故答案为145. 【点睛】 本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键. 十四、填空题 14.-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+ 解析:-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5, ∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1, 把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中, 可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】 本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 十五、填空题 15.(6,2)或(4,2) 【分析】 根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解. 【详解】 ∵点A(1,2),AC∥x轴, 解析:(6,2)或(4,2) 【分析】 根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解. 【详解】 ∵点A(1,2),AC∥x轴, ∴点C的纵坐标为2, ∵AC=5, ∴点C在点A的左边时横坐标为1-5=-4, 此时,点C的坐标为(-4,2), 点C在点A的右边时横坐标为1+5=6, 此时,点C的坐标为(6,2) 综上所述,则点C的坐标是(6,2)或(-4,2). 故答案为(6,2)或(-4,2). 【点睛】 本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论. 十六、填空题 16.(﹣506,505) 【分析】 根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且 解析:(﹣506,505) 【分析】 根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论. 【详解】 解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…, ∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限, ∵2021÷4=505…1, ∴点P2021在第二象限, ∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3), ∴点P2021(﹣506,505), 故答案为:(﹣506,505). 【点睛】 本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标. 十七、解答题 17.(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要 解析:(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要考查实数的计算,解题的关键是熟知实数的性质. 十八、解答题 18.(1);(2). 【分析】 (1)根据平方根的性质,直接开方,即可解答; (2)根据立方根,直接开立方,即可解答. 【详解】 解:(1) , . (2) . 【点睛】 本题考查平方根、立方根, 解析:(1);(2). 【分析】 (1)根据平方根的性质,直接开方,即可解答; (2)根据立方根,直接开立方,即可解答. 【详解】 解:(1) , . (2) . 【点睛】 本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质. 十九、解答题 19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【分析】 由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解. 【详解】 证明:(已知), (内 解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【分析】 由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解. 【详解】 证明:(已知), (内错角相等,两直线平行), (两直线平行,同位角相等). 又(已知), (两直线平行,同位角相等), (等量代换). 平分(已知), (角平分线的定义). (等量代换). 故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【点睛】 本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”. 二十、解答题 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12). 【分析】 (1)分别作出A,B,C的对应点A′,B′,C′即可解决问题; (2)设P(0,m 解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12). 【分析】 (1)分别作出A,B,C的对应点A′,B′,C′即可解决问题; (2)设P(0,m),构建方程解决问题即可. 【详解】 解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2); (2)设P(0,m), 由题意:×4×|m+2|=4××4×3, 解得m=10或-12, ∴P(0,10)或(0,-12). 【点睛】 本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质. 二十一、解答题 21.(1)4;5;(2);3;(3)±8. 【分析】 (1)首先估算出的取值范围,即可得出结论; (2)根据 (1)的结论,得到,即可求得答案; (3)根据(2)的结论代入计算即可求得答案. 【详解】 解析:(1)4;5;(2);3;(3)±8. 【分析】 (1)首先估算出的取值范围,即可得出结论; (2)根据 (1)的结论,得到,即可求得答案; (3)根据(2)的结论代入计算即可求得答案. 【详解】 解:(1)∵16<17<25, ∴, ∴a=4,b=5. 故答案为:4;5 (2)∵, ∴, 由此:的整数部分为6,小数部分为, ∴,. 故答案为:;3 (3)当,时,代入, . ∴64的平方根为:. 【点睛】 本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG, 解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE; (2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD; (3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系. 【详解】 解:(1)如图1中,过点E作EG∥AB, 则∠BEG=∠ABE, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG=∠CDE, 所以∠BEG+∠DEG=∠ABE+∠CDE, 即∠BED=∠ABE+∠CDE; (2)图2中,因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, 所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BED=∠ABE+∠CDE, ∠BFD=∠ABF+∠CDF, 所以∠BED=2∠BFD. (3)∠BED=360°-2∠BFD. 图3中,过点E作EG∥AB, 则∠BEG+∠ABE=180°, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG+∠CDE=180°, 所以∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), 因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BFD=∠ABF+∠CDF, 所以∠BED=360°-2∠BFD. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 二十四、解答题 24.(1),;(2)1;(3)不变,值为2 【分析】 (1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4- 解析:(1),;(2)1;(3)不变,值为2 【分析】 (1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可; (3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可. 【详解】 解:(1)∵+|b-2|=0, ∴a-2b=0,b-2=0, 解得a=4,b=2, ∴A(0,4),C(2,0). (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒, ∴0<t≤2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t, ∴S△DOP=•OP•yD=(2-t)×2=2-t,S△DOQ=•OQ•xD=×2t×1=t, ∵S△ODP=S△ODQ, ∴2-t=t, ∴t=1. (3)结论:的值不变,其值为2.理由如下:如图2中, ∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO, ∴∠GOC+∠ACO=180°, ∴OG∥AC, ∴∠1=∠CAO, ∴∠OEC=∠CAO+∠4=∠1+∠4, 如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG, ∴∠PHO=∠GOF=∠1+∠2, ∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4, ∴=2. 【点睛】 本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题. 二十五、解答题 25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180° 解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案; (2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°, 得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案; (3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解. 【详解】 解:(1)证明:∵BE平分∠ABD, ∴∠EBD=∠ABD, ∵DE平分∠BDC, ∴∠EDB=∠BDC, ∴∠EBD+∠EDB=(∠ABD+∠BDC), ∵AB∥CD, ∴∠ABD+∠BDC=180°, ∴∠EBD+∠EDB=90°, ∴∠BED=180°﹣(∠EBD+∠EDB)=90°. (2)解:如图2, 由(1)知:∠EBD+∠EDB=90°, 又∵∠ABD+∠BDC=180°, ∴∠ABE+∠EDC=90°, 即∠ABE+α+∠FDC=90°, ∵BG平分∠ABE,DG平分∠CDF, ∴∠ABE=2∠ABG,∠CDF=2∠CDG, ∴2∠ABG+2∠CDG=90°﹣α, 过点G作GP∥AB, ∵AB∥CD, ∴GP∥AB∥CD ∴∠ABG=∠BGP,∠PGD=∠CDG, ∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=; (3)如图,过点F、G分别作FN∥AB、GM∥AB, ∵AB∥CD, ∴AB∥GM∥FN∥CD, ∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM, ∴∠BFD=∠BFN+∠DFN=∠3+∠5, ∠BGD=∠BGM+∠DGM=∠4+∠6, ∵BG平分∠FBP,DG平分∠FDQ, ∴∠4=∠FBP=(180°﹣∠3), ∠6=∠FDQ=(180°﹣∠5), ∴∠BFD+∠BGD=∠3+∠5+∠4+∠6, =∠3+∠5+(180°﹣∠3)+(180°﹣∠5), =180°+(∠3+∠5), =180°+∠BFD, 整理得:2∠BGD+∠BFD=360°. 【点睛】 本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文