人教版初二数学上册压轴题检测试题附解析(一).doc
《人教版初二数学上册压轴题检测试题附解析(一).doc》由会员分享,可在线阅读,更多相关《人教版初二数学上册压轴题检测试题附解析(一).doc(21页珍藏版)》请在咨信网上搜索。
人教版初二数学上册压轴题检测试题附解析(一) 1.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点. (1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标; (2)当a+b=0时, ①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF; ②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小. 2.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离. 3.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限. (1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________; (2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF; (3)试探究(2)中OD,OE与DF之间的关系,并说明理由. 4.如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为. (1)求的取值范围. (2)当时,问与是否全等,并说明理由. (3)时,若为等腰三角形,求的值. 5.阅读材料1: 对于两个正实数,由于,所以,即,所以得到,并且当时, 阅读材料2: 若,则 ,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值. 根据以上阅读材料,请回答以下问题: (1)比较大小 (其中≥1); -2(其中<-1) (2)已知代数式变形为,求常数的值 (3)当= 时,有最小值,最小值为 (直接写出答案). 6.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F. (1)如图1,连CF,求证:△ACF≌△AEF. (2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明. (3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果). 7.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts. (1)当t为何值时,M、N两点重合; (2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化. ①当t为何值时,△AMN是等边三角形; ②当t为何值时,△AMN是直角三角形; (3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值. 8.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”. (1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号); (2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积; (3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC; ②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:. 【参考答案】 2.(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴 解析:(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题. 【详解】解:(1)∵2a2+4ab+4b2+2a+1=0, ∴(a+2b)2+(a+1)2=0, ∵(a+2b)2≥0 ,(a+1)2≥0, ∴a+2b=0,a+1=0, ∴a=﹣1,b=, ∴A(﹣1,0),B(0,). (2)①证明:如图1中, ∵a+b=0, ∴a=﹣b, ∴OA=OB, 又∵∠AOB=90°, ∴∠BAO=∠ABO=45°, ∵D与P关于y轴对称, ∴BD=BP, ∴∠BDP=∠BPD, 设∠BDP=∠BPD=α, 则∠PBF=∠BAP+∠BPA=45°+α, ∵PE⊥DB, ∴∠BEF=90°, ∴∠F=90°﹣∠EBF, 又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α, ∴∠F=45°+α, ∴∠PBF=∠F, ∴PB=PF. ②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF, ∵∠BOQ=∠BQF=∠FHQ=90°, ∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°, ∴∠BQO=∠QFH, ∵QB=QF, ∴△FQH≌△QBO(AAS), ∴HQ=OB=OA, ∴HO=AQ=PC, ∴PH=OC=OB=QH, ∴FQ=FP, 又∠BFQ=45°, ∴∠APB=22.5°. 【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题. 3.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=9 解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 4.(1),;C(8,4); (2)证明见解析; (3),理由见解析. 【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D, 证明,进一步可求出点C坐标; (2)利用已知证明,,再证 解析:(1),;C(8,4); (2)证明见解析; (3),理由见解析. 【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D, 证明,进一步可求出点C坐标; (2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF; (3)证明得到,,又由(2)可知,进一步可得. (1) 解:∵,即:, ∴,, 作轴交于点D, ∵,, ∴, 在和中, ∴, ∴,, ∴,即. (2) 证明:∵,BE平分, ∴,, 在和中, ∴, ∴,, ∵, ∴, ∴, ∴, ∴, 在和中, ∴, ∴,即CG垂直平分EF. (3) 解:,理由如下: ∵, , ∴, 在和中, ∴, ∴,, ∵, ∴, 又由(2)可知, ∴,即. 【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键. 5.(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形 【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可; (2)根据题意利用全等三角形的判定定理(SAS),进行 解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形 【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可; (2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可; (3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算. 【详解】(1)依题意, , . (2)时,与全等, 证明:时,,,在和中, ∵,,点是的中点, ,,, (SAS). (3)①当时,有; ②当时, ∵, ∴, ∴ 有, ∵, ∴(舍去); ③当时, ∵, ∴, ∴ 有, ∴; 综上,当或时,为等腰三角形. 【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键. 6.(1);(2);(3)0,3. 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料 解析:(1);(2);(3)0,3. 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料(2)可知时(即x=0,)有最小值. 【详解】解:(1),所以; 当时,由阅读材料1可得,, 所以; (2) , 所以; (3) ∵x≥0, ∴ 即:当时,有最小值, ∴当x=0时,有最小值为3. 【点睛】本题主要考查了分式的混合运算和配方法的应用.读懂材料并加以运用是解题的关键. 7.(1)证明见解析 (2),证明见解析 (3)6 【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明; (2)在BE上截取BM=CF,连接AM.由 解析:(1)证明见解析 (2),证明见解析 (3)6 【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明; (2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出; (3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出. (1) ∵AF平分∠CAE, ∴. ∵AB=AC,AB=AE, ∴AC =AE. 又∵AF=AF, ∴. (2) 证明:∵, ∴,. 如图,在BE上截取BM=CF,连接AM. 在和中,, ∴, ∴,. ∵,, ∴为等边三角形, ∴. ∵, ∴,即, ∴为等边三角形, ∴, ∴. 即AF,EF,BF之间存在的关系为:; (3) 如图,延长BA,CF交于点N. ∵,, ∴为等腰直角三角形, ∴,. ∵AE∥BC, ∴. ∵, ∴, ∴. 由(1)可知, ∴, ∴,即. ∵为的角平分线, ∴. ∵, ∴,即. 在和中,, ∴, ∴. 故答案为:6. 【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题. 8.(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的 解析:(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可; (2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形; ②分别就∠AMN=90°和∠ANM=90°列方程求解可得; (3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值. 【解答】解:(1)设点M、N运动x秒后,M、N两点重合, x×1+6=2x, 解得:x=6, 即当M、N运动6秒时,点N追上点M; (2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1, AM=t,AN=6﹣2t, ∵AB=AC=BC=6cm, ∴∠A=60°,当AM=AN时,△AMN是等边三角形, ∴t=6﹣2t, 解得t=2, ∴点M、N运动2秒后,可得到等边三角形△AMN. ②当点N在AB上运动时,如图2, 若∠AMN=90°, ∵BN=2t,AM=t, ∴AN=6﹣2t, ∵∠A=60°, ∴2AM=AN,即2t=6﹣2t, 解得; 如图3,若∠ANM=90°, 由2AN=AM得2(6﹣2t)=t, 解得. 综上所述,当t为或时,△AMN是直角三角形; (3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形, 由(1)知6秒时M、N两点重合,恰好在C处, 如图4,假设△AMN是等腰三角形, ∴AN=AM, ∴∠AMN=∠ANM, ∴∠AMC=∠ANB, ∵AB=BC=AC, ∴△ACB是等边三角形, ∴∠C=∠B, 在△ACM和△ABN中, ∵∠AMC=∠ANB,∠C=∠B,AC=AB, ∴△ACM≌△ABN(AAS), ∴CM=BN, ∴t﹣6=18﹣2t, 解得t=8,符合题意. 所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形. 【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键. 9.(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则, 解析:(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可; (3)记面积为,则,,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论. (1) 根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形, 故答案为:③④ (2) 如图,过A作,交CB的延长线于F, ∴ 四边形AFCE是矩形 则 四边形AFCE是正方形, 即四边形ABCD的面积为16 (3) ①记, ∴ ∵ ∴ ∴ ∵ ∴ ∴ ∴ ∴ 如图:作, ∴ ∴ AMAD ∴四边形AMND为平行四边形 ∴ADMN ∴ADBC ②∵ADBC ∴ 又∵AD=AB ∴ ∴ ∴BD平分 如图: ∵ ∴ ∴ 又∵ ∴ ∴ 【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 数学 上册 压轴 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文