人教版七年级下册数学期末综合复习题.doc
《人教版七年级下册数学期末综合复习题.doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末综合复习题.doc(25页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末综合复习题 一、选择题 1.9的算术平方根为() A.9 B. C.3 D. 2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( ) A. B. C. D. 3.平面直角坐标系中,点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题是假命题的是( ) A.对顶角相等 B.两直线平行,同旁内角相等 C.过直线外一点有且只有一条直线与已知直线平行 D.同位角相等,两直线平行 5.若的两边与的两边分别平行,且,那么的度数为( ) A. B. C.或 D.或 6.有个数值转换器,原理如图所示,当输入为27时,输出的值是( ) A.3 B. C. D.32 7.如图,将一张长方形纸片折叠,若,则的度数是( ) A.80° B.70° C.60° D.50° 8.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上平移1个单位至点P1(1,1),紧接着第2次向左平移2个单位至点P2(﹣1,1),第3次向上平移1个单位到达P3(﹣1,2),第4次向右平移3个单位到达P4(2,2),第5次又向上平移1个单位,第6次向左平移4个单位,…,依此规律平移下去,点P2021的坐标为( ) A.(506,1011) B.(506,﹣506) C.(﹣506,1011) D.(﹣506,506) 九、填空题 9.已知是实数,且则的值是_______. 十、填空题 10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________. 十一、填空题 11.如图,C在直线BE上,∠ABC与∠ACE的角平分线交于点,∠A=m,若再作∠、∠的平分线,交于点;再作∠、∠的平分线,交于点;……;依次类推,则为_______. 十二、填空题 12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____. 十三、填空题 13.如图①是长方形纸带,,将纸带沿折叠成图②,再沿折叠成图③,则图③中的的度数是________. 十四、填空题 14.定义一种新运算“”规则如下:对于两个有理数,,,若,则______ 十五、填空题 15.在平面直角坐标系中,若在轴上,则线段长度为________. 十六、填空题 16.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________. 十七、解答题 17.计算: (1); (2). 十八、解答题 18.求下列各式中的值: (1);(2);(3). 十九、解答题 19.阅读下列推理过程,在括号中填写理由. 已知:如图,点、分别是线段、上的点,平分,,,交于点. 求证:平分. 证明:平分(已知) ( ) (已知) ( ) ( ) (等量代换) ( ) ( ) ( ) ( ) 平分( ) 二十、解答题 20.如图,,,.将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 . (1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 . (2)求 的面积. (3)已知点 在 轴上,以 ,, 为顶点的三角形面积为 ,则 点的坐标为 . 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为的整数部分是,将这个数减去其整数部分,差就是小数部分. 根据以上内容,请解答: 已知,其中是整数,,求的值. 二十二、解答题 22.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 二十三、解答题 23.已知,,. (1)如图1,求证:; (2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数. 二十四、解答题 24.将两块三角板按如图置,其中三角板边,,,. (1)下列结论:正确的是_______. ①如果,则有; ②; ③如果,则平分. (2)如果,判断与是否相等,请说明理由. (3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数. 二十五、解答题 25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据算术平方根的定义即可得. 【详解】 解:, 的算术平方根为3, 故选:C. 【点睛】 本题考查了算术平方根,熟记定义是解题关键. 2.C 【分析】 根据平移的特点即可判断. 【详解】 将图进行平移,得到的图形是 故选C. 【点睛】 此题主要考查平移的特点,解题的关键是熟知平移的定义. 解析:C 【分析】 根据平移的特点即可判断. 【详解】 将图进行平移,得到的图形是 故选C. 【点睛】 此题主要考查平移的特点,解题的关键是熟知平移的定义. 3.D 【分析】 根据点在各象限的坐标特点即可得答案. 【详解】 ∵点的横坐标2>0,纵坐标-3<0, ∴点所在的象限是第四象限, 故选:D. 【点睛】 本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 真命题就是正确的命题,条件和结果相矛盾的命题是假命题. 【详解】 解:A. 对顶角相等是真命题,故A不符合题意; B. 两直线平行,同旁内角互补,故B是假命题,符合题意; C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意; D. 同位角相等,两直线平行,是真命题,故D不符合题意, 故选:B. 【点睛】 本题考查真假命题,是基础考点,掌握相关知识是解题关键. 5.A 【分析】 根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案. 【详解】 解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A, 又∵∠B=∠A+20°, ∴∠A+20°=∠A, ∵此方程无解, ∴此种情况不符合题意,舍去; 当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°; 又∵∠B=∠A+20°, ∴∠A+20°+∠A=180°, 解得:∠A=80°; 综上所述,的度数为80°, 故选:A. 【点睛】 本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案. 6.B 【分析】 利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值. 【详解】 根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符合题意,即输出的y值为. 故答案选:B. 【点睛】 此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定. 7.A 【分析】 先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案. 【详解】 解:如图, 由折叠性质知∠4=∠2=50°, ∴∠3=180°-∠4-∠2=80°, ∵AB∥CD, ∴∠1=∠3=80°, 故选:A. 【点睛】 本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质. 8.A 【分析】 通过观察前面几次点的坐标,找到规律,即可求解. 【详解】 解:设第n次平移至点Pn, 观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5( 解析:A 【分析】 通过观察前面几次点的坐标,找到规律,即可求解. 【详解】 解:设第n次平移至点Pn, 观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P6(﹣2,3),P7(﹣2,4),P8(3,4),P9(3,5),…, ∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(﹣n﹣1,2n+1),P4n+3(﹣n﹣1,2n+2)(n为自然数). ∵2021=505×4+1, ∴P2021(505+1,505×2+1),即(506,1011). 故选:A. 【点睛】 此题主要考查了探索坐标系中点的规律,理解题意找到点的运动规律是解题的关键. 九、填空题 9.6 【解析】 【分析】 根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案. 【详解】 解:由题意得,x−2=0,y-3=0, 解得,x=2,y=3, xy=6, 故答案为:6. 【点睛 解析:6 【解析】 【分析】 根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案. 【详解】 解:由题意得,x−2=0,y-3=0, 解得,x=2,y=3, xy=6, 故答案为:6. 【点睛】 本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 十、填空题 10.(-3,-2) 【分析】 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】 点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2). 故答案为:(﹣3,﹣2). 【点 解析:(-3,-2) 【分析】 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】 点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2). 故答案为:(﹣3,﹣2). 【点睛】 本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律. 十一、填空题 11.【分析】 根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可 【详解】 当∠A=m时,∠=,以此类推,∠=,∠=,∠= 故答案为 【点睛】 本题主要考查了角平分线性质 解析: 【分析】 根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可 【详解】 当∠A=m时,∠=,以此类推,∠=,∠=,∠= 故答案为 【点睛】 本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键 十二、填空题 12.40° 【分析】 利用平行线的性质求出∠3即可解决问题. 【详解】 解: ∵直尺的两边互相平行, ∴∠1=∠3=50°, ∵∠2+∠3=90°, ∴∠2=90°﹣∠3=40°, 故答案为:40°. 解析:40° 【分析】 利用平行线的性质求出∠3即可解决问题. 【详解】 解: ∵直尺的两边互相平行, ∴∠1=∠3=50°, ∵∠2+∠3=90°, ∴∠2=90°﹣∠3=40°, 故答案为:40°. 【点睛】 本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题. 十三、填空题 13.180°-3α 【分析】 由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数. 【详解】 解:∵A 解析:180°-3α 【分析】 由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数. 【详解】 解:∵AD∥BC, ∴∠BFE=∠DEF=α,∠CFE=180°-∠DEF=180°-α, ∴图②中∠CFG=∠CFE-∠BFE=180°-α-α=180°-2α, ∴图③中∠CFE=∠CFG-∠BFE=180°-2α-α=180°-3α. 故答案为:180°-3α. 【点睛】 本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键. 十四、填空题 14.【分析】 根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答. 【详解】 解:由题意得:(5x-x)⊙(−2)=−1, ∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得 解析: 【分析】 根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答. 【详解】 解:由题意得:(5x-x)⊙(−2)=−1, ∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:, 故答案为. 【点睛】 本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 . 十五、填空题 15.5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查 解析:5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数. 十六、填空题 16.(1011,﹣1010) 【分析】 求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010). 【详解】 解:由题意A1(1 解析:(1011,﹣1010) 【分析】 求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010). 【详解】 解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••, 可以看出,3=,5=,7=,各个点的纵坐标等于横坐标的相反数+1, 故=1011, ∴A2021(1011,﹣1010), 故答案为:(1011,﹣1010). 【点评】 本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 十七、解答题 17.(1)5;(2)4﹣. 【分析】 (1)直接利用二次根式以及立方根的性质分别化简得出答案; (2)直接去绝对值进而计算得出答案. 【详解】 (1)原式=4+2﹣ =5; (2)原式=3﹣(﹣) =3 解析:(1)5;(2)4﹣. 【分析】 (1)直接利用二次根式以及立方根的性质分别化简得出答案; (2)直接去绝对值进而计算得出答案. 【详解】 (1)原式=4+2﹣ =5; (2)原式=3﹣(﹣) =3﹣+ =4﹣. 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题 18.(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平 解析:(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键. 十九、解答题 19.见解析 【分析】 根据平行线的性质,角平分线的定义填写理由即可. 【详解】 证明:平分(已知) (角平分线的定义) (已知) (同位角相等,两直线平行) (两直线平行,内错角相等) (等量代换) ( 解析:见解析 【分析】 根据平行线的性质,角平分线的定义填写理由即可. 【详解】 证明:平分(已知) (角平分线的定义) (已知) (同位角相等,两直线平行) (两直线平行,内错角相等) (等量代换) (已知) (两直线平行,同位角相等) (两直线平行,内错角相等) (等量代换) 平分(角平分线的定义) 【点睛】 本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1)见解析,,;(2)5;(3) 或 【分析】 (1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P点 解析:(1)见解析,,;(2)5;(3) 或 【分析】 (1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P点得坐标为 ,因为以 ,,P为顶点得三角形得面积为 , 所以 ,求解即可. 【详解】 解:(1) 如图, 为所作. (0,3),(4,0); (2) 计算 的面积 . (3)设P点得坐标为(t,0), 因为以 ,, 为顶点得三角形得面积为 , 所以 ,解得 或 , 即 点坐标为 (3,0) 或(5,0). 【点睛】 本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题 解析:同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 二十三、解答题 23.(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的 解析:(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明: ; (2)过点E作,延长DC至Q,过点M作 ,,, AF平分 FH平分 设 , . 【点睛】 本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键. 二十四、解答题 24.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断 解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断; (3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值. 【详解】 解:(1)①∵∠BFD=60°,∠B=45°, ∴∠BAD+∠D=∠BFD+∠B=105°, ∴∠BAD=105°-30°=75°, ∴∠BAD≠∠B, ∴BC和AD不平行,故①错误; ②∵∠BAC+∠DAE=180°, ∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确; ③若BC∥AD, 则∠BAD=∠B=45°, ∴∠BAE=45°, 即AB平分∠EAD,故③正确; 故答案为:②③; (2)相等,理由是: ∵∠CAD=150°, ∴∠BAE=180°-150°=30°, ∴∠BAD=60°, ∵∠BAD+∠D=∠BFD+∠B, ∴∠BFD=60°+30°-45°=45°=∠C; (3)若AC∥DE, 则∠CAE=∠E=60°, ∴∠EAB=90°-60°=30°; 若BC∥AD, 则∠B=∠BAD=45°, ∴∠EAB=45°; 若BC∥DE, 则∠E=∠AFB=60°, ∴∠EAB=180°-60°-45°=75°; 若AB∥DE, 则∠D=∠DAB=30°, ∴∠EAB=30°+90°=120°; 若AE∥BC, 则∠C=∠CAE=45°, ∴∠EAB=45°+90°=135°; 综上:∠EAB的度数可能为30°或45°或75°或120°或135°. 【点睛】 本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题. 二十五、解答题 25.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 综合 复习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文