人教版初二数学上册期末模拟综合检测试题含解析(一).doc
《人教版初二数学上册期末模拟综合检测试题含解析(一).doc》由会员分享,可在线阅读,更多相关《人教版初二数学上册期末模拟综合检测试题含解析(一).doc(21页珍藏版)》请在咨信网上搜索。
人教版初二数学上册期末模拟综合检测试题含解析(一) 一、选择题 1.下列图形中是轴对称图形的是( ) A. B. C. D. 2.少年的一根头发的直径大约为0.0000412:米,将数据“0.0000412”用科学记数法表示为( ) A. B. C. D. 3.下列计算中正确的是( ) A.a2+b3=2a5 B.a4÷a=a4 C.a2•a4=a8 D.(a2)3=a6 4.使分式有意义的条件是( ) A.x=±3 B.x≠±3 C.x≠﹣3 D.x≠3 5.下列由左边到右边的变形,是因式分解的为( ) A. B. C. D. 6.下列各式从左到右的变形一定正确的是( ) A. B. C. D. 7.如图,AB=DE,∠B=∠DEF,添加下列一个条件后,仍然无法确定△ABC≌△DEF的是( ) A.BE=CF B.∠A=∠D C.∠ACB=∠F D.AC=DF 8.若关于x的方程有增根,则m的值为( ) A.3 B.0 C.1 D.任意实数 9.如图,在中,是延长线上一点,,,则等于( ) A. B. C. D. 10.如图,在△ABD中,AD=AB,∠DAB=90⁰,在△ACE中,AC=AE,∠EAC=90⁰,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有( ) A.4个 B.3个 C.2个 D.1个 二、填空题 11.当x=___时,分式的值为0. 12.在平面直角坐标系中,点关于x轴的对称点的坐标为_____________. 13.如果如果mn=2,mn=-4,那么 的值为________ 14.已知,则_________. 15.如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________. 16.若x2+2(a+4)x+36是完全平方式,则a=_____. 17.如图,点P在∠AOB内部,PM⊥OA于点M,PN⊥OB于点N,PM=PN,若∠MPN=140°,则∠AOC=_____°. 18.如图,△ABC中,AB=AC=10cm,BC=8cm,点E为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为________cm/s时,能够使△BPE与△CQP全等. 三、解答题 19.因式分解: (1);(2)27x2y-36xy2+12y3. 20.化简:. 21.如图,、.求证:. 22.如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线. (1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数; (2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明. 23.某商场购进甲、乙两种商品,甲种商品共用了4000元,乙种商品共用了4800元.已知乙种商品每件进价比甲种商品每件进价多16元,且购进的甲、乙两种商品件数相同. (1)求甲、乙两种商品的每件进价; (2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为120元,乙种商品的销售单价为136元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2520元,问甲种商品按原销售单价至少销售多少件? 24.我们知道整数除以整数(其中),可以用竖式计算,例如计算可以用整式除法如图:,所以. 类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下: ①把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐; ②用被除式的第一项除以除式第一项,得到商式的第一项; ③用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项; ④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除. 例如:计算. 可用整式除法如图: 所以除以 商式为,余式为0 根据阅读材料,请回答下列问题: (1) . (2),商式为 ,余式为 . (3)若关于的多项式能被三项式整除,且均为整数,求满足以上条件的的值及商式. 25.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点. (1)若+b2-10b+25=0,判断△AOB的形状,并说明理由; (2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长; (3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围. 26.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题. [问题]在四边形ABDE中,C是BD边的中点. (1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案) (2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明; (3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案) 【参考答案】 一、选择题 2.B 解析:B 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形. B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形. 故选:B. 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:数据0.0000412米可用科学记数法表示为4.12×10-5米, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.D 解析:D 【分析】本题分别利用合并同类项法则,同底数幂的除法,同底数幂的想乘,运算法则和幂的乘方运算法则等知识分别化简得出即可. 【详解】A、与不是同类项,所以不能合并,故不符合题意; B、,故本选项不符合题意; C、,故本选项不符合题意; D、,故本选项符合题意. 故选:D. 【点睛】此题考查了合并同类项法则,同底数幂的除法,同底数幂的想乘,运算法则和幂的乘方运算法则等知识,正确掌握运算法则是解题关键. 5.D 解析:D 【分析】根据分式有意义的条件:分母≠0,即x-3≠0,进行求解即可. 【详解】解:∵分式有意义, ∴x-3≠0, 解得x≠3. 故选:D. 【点睛】此题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0,是解决问题的关键. 6.C 解析:C 【分析】直接利用因式分解的意义分别判断得出答案.分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式. 【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意; B、右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意; C、从左边到右边的变形,是因式分解,故此选项符合题意; D、左右两边的式子不相等,故此选项不合题意. 故选:C. 【点睛】此题主要考查了因式分解,正确把握因式分解的意义是解题的关键. 7.C 解析:C 【分析】根据分式的基本性质即可求出答案. 【详解】解:A、,故A不符合题意; B、,故B不符合题意; C、,故C符合题意; D、当c=0时,此时不成立,故D不符合题意. 故选:C. 【点睛】本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质. 8.D 解析:D 【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案. 【详解】∵AB=DE,∠B=∠DEF, ∴添加BE=CF,可得BC=EF,利用SAS可得△ABC≌△DEF; ∴添加∠A=∠D,利用ASA可得△ABC≌△DEF; ∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF; 而添加AC=DF,利用SSA不能得到△ABC≌△DEF; 故选:D. 【点睛】本题考查了全等三角形的判定,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目. 9.C 解析:C 【分析】根据题意可得x=3,然后把x的值代入整式方程中进行计算即可解答. 【详解】解:, 去分母得x-4+m=2(x-3), ∵方程有增根, ∴x=3, 把x=3代入x-4+m=2(x-3)中得: 3-4+m=0, ∴m=1, 故选:C. 【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键. 10.A 解析:A 【分析】根据三角形外角性质:三角形的一个外角等于和它不相邻的两个内角的和,经计算即可得到答案. 【详解】解:∵是延长线上一点, ∴, ∵,, ∴ 故选:A. 【点睛】本题考查了三角形外角的知识;解题的关键是熟练掌握三角形外角的性质,从而完成求解. 11.B 解析:B 【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断. 【详解】∵∠BAD=∠CAE=90°, ∴∠BAD+∠BAC=∠CAE+∠BAC, ∴∠CAD=∠BAE, 又∵AD=AB,AC=AE, ∴△CAD≌△EAB(SAS), ∴DC=BE. 故①正确. ∵△CAD≌△EAB, ∴∠ADC=∠ABE. 设AB与CD的交点为O. ∵∠AOD=∠BOF,∠ADC=∠ABE, ∴∠BFO=∠BAD=90°, ∴CD⊥BE. 故③正确. 过点A作AP⊥BE于P,AQ⊥CD于Q. ∵△CAD≌△EAB,AP⊥BE,AQ⊥CD, ∴AP=AQ, ∴AF平分∠DFE. 故④正确. ②无法通过已知条件和图形得到. 故选B. 【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键. 二、填空题 12. 【分析】根据分式的意义可得到x﹣2≠0,即x≠2,根据题意分式值为0可知4x+3=0,由此求解即可. 【详解】解:∵分式的值为0, ∴, 解得, 故答案为:. 【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题. 13. 【分析】根据关于x轴对称的两个点的横坐标不变,纵坐标互为相反数,可直接得到答案. 【详解】点关于x轴的对称点的坐标, 故答案为:. 【点睛】本题考查了关于x轴对称的两个点的坐标特点,掌握“关于x轴对称的两个点的横坐标不变,纵坐标互为相反数”是解题的关键. 14.-3 【分析】先化简分式,然后将m -n=2,mn=-4的值代入计算即可. 【详解】, ∵m -n=2,mn=-4, ∴原式=. 故答案为-3. 【点睛】本题考查了完全平方公式,对完全平方公式的灵活应用变形整理是解此题的关键. 15.3 【分析】逆用同底数幂的除法公式即可. 【详解】∵, ∴. 故答案为:3. 【点睛】本题考查同底数幂的除法逆用,熟记同底数幂相除,底数不变,指数相减是解题的关键. 16.3 【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此 解析:3 【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解. 【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵点P关于OA的对称点为C, ∴PM=CM,OP=OC,∠COA=∠POA; ∵点P关于OB的对称点为D, ∴PN=DN,OP=OD,∠DOB=∠POB, ∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°, ∴△COD是等边三角形, ∴CD=OC=OD=3. ∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3. 【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键. 17.2或﹣10 【分析】利用完全平方公式的特征判断即可求出a的值. 【详解】解:∵x2+2(a+4)x+36是完全平方式, ∴2(a+4)=±12, 解得:a=2或﹣10. 故答案为:2或﹣1 解析:2或﹣10 【分析】利用完全平方公式的特征判断即可求出a的值. 【详解】解:∵x2+2(a+4)x+36是完全平方式, ∴2(a+4)=±12, 解得:a=2或﹣10. 故答案为:2或﹣10. 【点睛】本题主要考查了完全平方式,熟知完全平方式是解题的关键. 18.20 【分析】由PM⊥OA于点M,PN⊥OB于点N得∠PMO=∠PNO=90°,已知∠MPN=140°,根据四边形的内角和等于360°可以求出∠AOB的度数,因为PM=PN,OP为Rt△PMO和R 解析:20 【分析】由PM⊥OA于点M,PN⊥OB于点N得∠PMO=∠PNO=90°,已知∠MPN=140°,根据四边形的内角和等于360°可以求出∠AOB的度数,因为PM=PN,OP为Rt△PMO和Rt△PNO的公共边,由“HL”可以证明Rt△PMO≌Rt△PNO,则∠POM=∠PON,所以∠AOC= ∠AOB,即可求出∠AOC的度数. 【详解】解:如图,∵PM⊥OA于点M,PN⊥OB于点N, ∴∠PMO=∠PNO=90°, 在Rt△PMO和Rt△PNO中, , ∴Rt△PMO≌Rt△PNO(HL), ∴∠POM=∠PON, ∵∠MPN=140°, ∴∠AOB=360°-90°-90°-140°=40°, ∴∠AOC=∠AOB=×40°=20°, 故答案为:20. 【点睛】此题重点考查全等三角形的判定与性质、多边形的内角和、角平分线的定义等知识,证明三角形全等是解题的关键. 19.75或3 【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定得出两种情况:①BE=CP,BP=CQ,②BE=CQ,BP=PC,设运动时间为t秒,列出方程,再求出答案即可. 【详解】 解析:75或3 【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定得出两种情况:①BE=CP,BP=CQ,②BE=CQ,BP=PC,设运动时间为t秒,列出方程,再求出答案即可. 【详解】解:设运动时间为t秒, ∵AB=10厘米,点E为AB的中点, ∴BE=AB=5(cm), ∵AB=AC, ∴∠B=∠C, ∴要使,△BPE能够与△CQP全等,有两种情况: ①BE=CP,BP=CQ, 8﹣3t=5, 解得:t=1, ∴CQ=BP=3×1=3, ∴点Q的运动速度为3÷1=3(厘米/秒); ②BE=CQ,BP=PC, ∵BC=8厘米, ∴BP=CP=BC=5(厘米), 即3t=4, 解得:t=, ∴CQ=BE=5厘米, ∴点Q的运动速度为5÷=3.75(厘米/秒), 故答案为:3或3.75. 【点睛】本题考查了全等三角形的判定和等腰三角形的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想. 三、解答题 20.(1);(2)3y(3x-2y)2 【分析】(1)先多项式乘多项式,再合并同类项,最后利用平方差因式分解,即可; (2)先提取公因式,再利用完全平方公式,即可因式分解. 【详解】(1) = 解析:(1);(2)3y(3x-2y)2 【分析】(1)先多项式乘多项式,再合并同类项,最后利用平方差因式分解,即可; (2)先提取公因式,再利用完全平方公式,即可因式分解. 【详解】(1) = = =(a+2)(a-2); (2)27x2y-36xy2+12y3 =3y(9x2-12xy+4y2) =3y(3x-2y)2. 【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法,是解题的关键. 2【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案. 【详解】解:原式 ; 【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简. 解析: 【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案. 【详解】解:原式 ; 【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简. 22.见解析 【分析】、,再加上公共边即可正面两个三角形全等. 【详解】证明:在和中 ∴ ∴ 【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键. 解析:见解析 【分析】、,再加上公共边即可正面两个三角形全等. 【详解】证明:在和中 ∴ ∴ 【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键. 23.(1)15° (2)见解析 【分析】(1)根据角平分线的定义得∠BAE=∠BAC=40°.而∠BAD=90°−∠ABD=25°,利用角的和差关系可得答案; (2)根据高在形内和形外进行分类,再 解析:(1)15° (2)见解析 【分析】(1)根据角平分线的定义得∠BAE=∠BAC=40°.而∠BAD=90°−∠ABD=25°,利用角的和差关系可得答案; (2)根据高在形内和形外进行分类,再根据AB,AC,AD的位置进行讨论. (1) 解:∵AE是∠BAC的角平分线, ∴∠BAE=∠BAC=40°, ∵AD是△ABC的高线, ∴∠BDA=90°, ∴∠BAD=90°-∠ABD=25°, ∴∠DAE=∠BAE-∠BAD=40°-25°=15°. (2) ①当点D落在线段CB的延长线时,如图所示: 此时∠BAD+∠BAE=∠DAE; ②当点D在线段BC上,且在E点的左侧时,如图所示: 此时∠BAD+∠DAE=∠BAE; ③当点D在线段BC上,且在E点的右侧时,如图所示: 此时∠BAE+∠DAE=∠BAD; ④当点D在BC的延长线上时,如图所示: ∠BAE+∠DAE=∠BAD. 【点睛】本题主要考查了角平分线的定义,三角形内角和定理等知识,运用分类讨论思想是解题的关键. 24.(1)甲种商品的每件进价为80元,乙种商品的每件进价为96元 (2)甲种商品按原销售单价至少销售9件 【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为(x+16)元,根据数量=总价 解析:(1)甲种商品的每件进价为80元,乙种商品的每件进价为96元 (2)甲种商品按原销售单价至少销售9件 【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为(x+16)元,根据数量=总价÷单价结合购进的甲、乙两种商品件数相同,即可得出关于x的分式方程,解之经检验后即可得出结论; (2)利用数量=总价÷单价可求出购进甲、乙两种商品的数量,设甲种商品按原销售单价销售了m件,根据利润=销售总价−进货成本,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论. (1)解:设甲种商品的每件进价为x元,乙种商品的每件进价为(x+16)元.依题意,得:,解得:x=80,经检验,x=80是原分式方程的解,且符合题意,∴x+16=96,答:甲种商品的每件进价为80元,乙种商品的每件进价为96元; (2)甲种商品的购进数量为4000÷80=50(件),乙种商品的购进数量为4800÷96=50(件),设甲种商品按原销售单价销售了m件,依题意,得:120m+120×0.7(50−m)+136×50−4000−4800≥2520,解得:m≥,答:甲种商品按原销售单价至少销售9件. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 25.(1);(2),;(3)a= -3,b=7,商式为(2x-1). 【分析】(1)模仿例题,可用竖式计算; (2)模仿例题,可用竖式计算; (3)设商式为(x+m),则有=(2x+m)()=2x 解析:(1);(2),;(3)a= -3,b=7,商式为(2x-1). 【分析】(1)模仿例题,可用竖式计算; (2)模仿例题,可用竖式计算; (3)设商式为(x+m),则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m,根据对应项系数相等即可解决问题. 【详解】(1) . ∴. (2), ∴,商式为,余式为. (3)设商式为(2x+m), 则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m, ∴-3=3m, ∴m=-1, ∴a=m-2=-1-2=-3,b=6-m=6-(-1)=7,商式为(2x-1), 【点睛】本题考查整式的除法,解题的关键是理解被除式=除式×商式+余式,学会模仿解题. 26.(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2) 解析:(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度; (3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长. (1) 解:结论:△OAB是等腰直角三角形;理由如下: ∵+b2-10b+25=0,即, ∴,解得:, ∴A(−5,0),B(0,5), ∴OA=OB=5, ∴△AOB是等腰直角三角形. (2) 解:∵AM⊥OQ,BN⊥OQ, ∴, , ∴, ∴, ∵在△AMO与△ONB中, ∴△AMO≌△ONB(AAS), ∴AM=ON=4,BN=OM, ∵MN=7, ∴OM=3, ∴BN=OM=3. (3) 解:结论:PB的长为定值.理由如下, 作EK⊥y轴于K点,如图所示: ∵△ABE为等腰直角三角形, ∴AB=BE,∠ABE=90°, ∴∠EBK+∠ABO=90°, ∵∠EBK+∠BEK=90°, ∴∠ABO=∠BEK, ∵在△AOB和△BKE中, ∴△AOB≌△BKE(AAS), ∴OA=BK,EK=OB, ∵△OBF为等腰直角三角形, ∴OB=BF, ∴EK=BF, ∵在△EKP和△FBP中, ∴△PBF≌△PKE(AAS), ∴PK=PB, ∴PB=BK=OA=. 【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键. 27.(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△ 解析:(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论; (3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论; (3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可. (1) AE=AB+DE; 理由:在AE上取一点F,使AF=AB, ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, , ∴△ACB≌△ACF(SAS), ∴BC=FC,∠ACB=∠ACF. ∵C是BD边的中点. ∴BC=CD, ∴CF=CD. ∵∠ACE=90°, ∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90° ∴∠ECF=∠ECD. 在△CEF和△CED中, , ∴△CEF≌△CED(SAS), ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE, 故答案为:AE=AB+DE; (2) 猜想:AE=AB+DE+BD. 证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG. ∵C是BD边的中点, ∴CB=CD=BD. ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, ∴△ACB≌△ACF(SAS), ∴CF=CB, ∴∠BCA=∠FCA. 同理可证:CD=CG, ∴∠DCE=∠GCE. ∵CB=CD, ∴CG=CF ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°. ∴∠FCA+∠GCE=60°. ∴∠FCG=60°. ∴△FGC是等边三角形. ∴FG=FC=BD. ∵AE=AF+EG+FG. ∴AE=AB+DE+BD. (3) 作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示: ∵C是BD边的中点, ∴CB=CD=BD=, ∵△ACB≌△ACF(SAS), ∴CF=CB=, ∴∠BCA=∠FCA, 同理可证:CD=CG=, ∴∠DCE=∠GCE, ∵CB=CD, ∴CG=CF, ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°, ∴∠FCA+∠GCE=60°, ∴∠FCG=60°, ∴△FGC是等边三角形, ∴FC=CG=FG=, ∵AE≤AF+FG+EG, ∴当A、F、G、E共线时AE的值最大,最大值为. 故答案为:. 【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 数学 上册 期末 模拟 综合 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文