人教七年级下册数学期末考试试卷含答案.doc
《人教七年级下册数学期末考试试卷含答案.doc》由会员分享,可在线阅读,更多相关《人教七年级下册数学期末考试试卷含答案.doc(24页珍藏版)》请在咨信网上搜索。
人教七年级下册数学期末考试试卷含答案 一、选择题 1.9的算术平方根是() A.81 B.3 C. D.4 2.下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点(3,-3)所在的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题是假命题的是( ) A.对顶角相等 B.两条直线被第三条直线所截,同位角相等 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行 5.如图,直线,被直线所截,,,则的度数为( ). A.40° B.60° C.45° D.70° 6.下列说法正确的是( ) A.0的立方根是0 B.0.25的算术平方根是-0.5 C.-1000的立方根是10 D.的算术平方根是 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( ) A.15° B.60° C.30° D.75° 8.如图,,,,,…按此规律,点的坐标为( ) A. B. C. D. 九、填空题 9.的算术平方根是__________. 十、填空题 10.若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=______ 十一、填空题 11.如图,四边形ABCD中,AB∥CD,AD∥BC,且∠BAD、∠ADC的角平分线AE、DF分别交BC于点E、F.若EF=2,AB=5,则AD的长为_______. 十二、填空题 12.如图,直线,被直线所截,,,则_________. 十三、填空题 13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___. 十四、填空题 14.当时,我们把称为x为“和1负倒数”.如:1的“和1负倒数”为;-3的“和1负倒数”为.若,是的“和1负倒数”,是的“和1负倒数”…依次类推,则=______;… = _____. 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________. 十七、解答题 17.计算: (1)3-(-5)+(-6) (2) 十八、解答题 18.已知,,求下列各式的值: (1); (2). 十九、解答题 19.如图,点F在线段AB上,点E、G在线段CD上,AB∥CD. (1)若BC平分∠ABD,∠D=100°,求∠ABC的度数; 解:∵AB∥CD(已知), ∴∠ABD+∠D=180°( ). ∵∠D=100°(已知), ∴∠ABD=80°. 又∵BC平分∠ABD,(已知), ∴∠ABC=∠ABD= °( ). (2)若∠1=∠2,求证:AE∥FG(不用写依据). 二十、解答题 20.如图,的三个顶点坐标分别为,,. (1)在平面直角坐标系中,画出; (2)将向下平移个单位长度,得到,并画出,并写出点的坐标. 二十一、解答题 21.阅读下面文字,然后回答问题. 给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,. (1)如果,其中是整数,且,那么______,_______; (2)如果,其中是整数,且,那么______,______; (3)已知,其中是整数,且,求的值; (4)在上述条件下,求的立方根. 二十二、解答题 22.如图,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长; (2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长. 二十三、解答题 23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 二十四、解答题 24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 二十五、解答题 25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为. 【详解】 解:=3, 故选:B. 【点睛】 本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别. 2.B 【分析】 根据平移的定义逐项分析判断即可. 【详解】 解:A、不能通过平移得到,故本选项错误; B、能通过平移得到,故本选项正确; C、不能通过平移得到,故本选项错误; D、不能通过平移得到,故 解析:B 【分析】 根据平移的定义逐项分析判断即可. 【详解】 解:A、不能通过平移得到,故本选项错误; B、能通过平移得到,故本选项正确; C、不能通过平移得到,故本选项错误; D、不能通过平移得到,故本选项错误. 故选:B. 【点睛】 本题考查了图形的平移,正确掌握平移的定义和性质是解题关键. 3.D 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 点(3,-3)的横坐标为正数,纵坐标为负数, 所以点(3,-3)所在的象限是第四象限, 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案. 【详解】 A、对顶角相等;真命题; B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等; C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题; D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题; 故选:B. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题. 5.A 【分析】 根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可. 【详解】 解:如图, ∵AB∥CD, ∴∠2=∠D, ∵∠1=140°, ∴∠D=∠2=180°−∠1=180°−140°=40°, 故选:A. 【点睛】 此题考查平行线的性质,关键是根据两直线平行,内错角相等解答. 6.A 【分析】 根据算术平方根以及立方根的概念逐一进行凑数即可得. 【详解】 A.0的立方根是0,正确,符合题意; B.0.25的算术平方根是0.5,故B选项错误,不符合题意; C.-1000的立方根是-10,故C选项错误,不符合题意; D.的算术平方根是,故D选项错误,不符合题意, 故选A. 【点睛】 本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键. 7.C 【分析】 直接利用平行线的性质结合等腰直角三角形的性质得出答案. 【详解】 解:如图所示:由题意可得:∠1=∠3=15°, 则∠2=45°﹣∠3=30°. 故选:C. 【点睛】 本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用. 8.C 【分析】 经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象 解析:C 【分析】 经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标=. 【详解】 解:由题可知 第一象限的点:A2,A6,A10…角标除以4余数为2; 第二象限的点:A3,A7,A11…角标除以4余数为3; 第三象限的点:A4,A8,A12…角标除以4余数为0; 第四象限的点:A5,A9,A13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A2022在第一象限. 观察图形,可知:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),…, ∴第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标) ∴点A4n-2的坐标为(,)(n为正整数), ∴点A2022的坐标为(506,506). 故选C. 【点睛】 本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)求解. 九、填空题 9.【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b 解析:1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b)2017=(4-3)2017=1. 故答案为:1. 【点睛】 本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数. 十一、填空题 11.8 【分析】 根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是 解析:8 【分析】 根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论. 【详解】 解:∵AD∥BC, ∴∠ADF=∠DFC, ∵DF平分∠ADC, ∴∠ADF=∠CDF, ∴∠DFC=∠CDF, ∴CF=CD, 同理BE=AB, ∵AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形, ∴AB=CD,AD=BC, ∴AB=BE=CF=CD=5, ∴BC=BE+CF﹣EF=5+5﹣2=8, ∴AD=BC=8, 故答案为:8. 【点睛】 本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质. 十二、填空题 12.100° 【分析】 先根据平行线的性质得出∠3=80°,再由邻补角得到∠2=100°. 【详解】 如图, ∵,, ∴∠3=80°, 又∵∠2+∠3=180°, ∴∠2=180°-∠3=180°-8 解析:100° 【分析】 先根据平行线的性质得出∠3=80°,再由邻补角得到∠2=100°. 【详解】 如图, ∵,, ∴∠3=80°, 又∵∠2+∠3=180°, ∴∠2=180°-∠3=180°-80°=100°. 故答案为:100°. 【点睛】 此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键. 十三、填空题 13.59° 【分析】 由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解. 【详解】 解:如图,∵长方形ABCD沿 解析:59° 【分析】 由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解. 【详解】 解:如图,∵长方形ABCD沿EF折叠, ∴∠1=∠2,AD∥BC, ∴∠FGE+∠GEC=180°, ∵∠FGE=62°, ∴∠GEC=180°-62°=118°, ∴∠1=∠2=∠GEC=59°, ∵AD∥BC, ∴∠GFE=∠2, ∴∠GFE=59°. 故答案为59°. 【点睛】 本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键. 十四、填空题 14.【分析】 根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答. 【详解】 解:由“和1负倒数”定义和可得: , , , …… 由此可得出从开 解析: 【分析】 根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答. 【详解】 解:由“和1负倒数”定义和可得: , , , …… 由此可得出从开始每3个数为一周期循环, ∵2021÷3=673…2, ∴,,又·.= =1, ∴… ==3, 故答案为:;3. 【点睛】 本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解 解析:(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解】 解:观察发现,每6个点形成一个循环, ∵A6(6,0), ∴OA6=6, ∵2021÷6=336…5, ∴点A2021的位于第337个循环组的第5个, ∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2, ∴点A2021的坐标为(2021,﹣2). 故答案为:(2021,﹣2). 【点睛】 此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解. 十七、解答题 17.(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 解析:(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 =2 (2)解:(-1)2- =1-4× =1-2 =-1 【点睛】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 十八、解答题 18.(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把 解析:(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把两边平方得:, 把代入得:, ∴; (2)∵,, ∴===48. 【点睛】 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 十九、解答题 19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析 【分析】 (1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可; (2)根据平行线的性质得到∠1=∠FGC,等 解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析 【分析】 (1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可; (2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE∥FG. 【详解】 (1)∵AB∥CD(已知), ∴∠ABD+∠D=180°(两直线平行,同旁内角互补), ∵∠D=100°(已知), ∴∠ABD=80°, 又∵BC平分∠ABD(已知), ∴∠ABC=∠ABD=40°(角平分线的定义). 故答案为:两直线平行,同旁内角互补;40;角平分线的定义; (2)证明:∵AB∥CD, ∴∠1=∠FGC, 又∵∠1=∠2, ∴∠2=∠FGC, ∴AE∥FG. 【点睛】 此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析,A1(-2,-1). 【分析】 (1)先根据坐标描出A、B、C三点,然后顺次连接即可; (2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐 解析:(1)见解析;(2)见解析,A1(-2,-1). 【分析】 (1)先根据坐标描出A、B、C三点,然后顺次连接即可; (2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可. 【详解】 解:(1)如图:△ABC即为所求; (2)如图:即为所求,点A1的坐标为(-2,-1). 【点睛】 本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键. 二十一、解答题 21.(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小, 解析:(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小,分别求得的值,再代入绝对值中计算即可; (4)根据前三问的结果,代入代数式求值,最后求立方根即可. 【详解】 (1), , , , 故答案为:2,,; (2) , , , 故答案为:﹣3,; (3), , , , ,, ; (4), , 27的立方根为3, 即的立方根为3. 【点睛】 本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题 22.(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. 解析:(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. (2)因为正方体的棱长为4,所以AB=. 【点睛】 本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键. 二十三、解答题 23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 二十四、解答题 24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 二十五、解答题 25.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教七 年级 下册 数学 期末考试 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文