分享
分销 收藏 举报 申诉 / 6
播放页_导航下方通栏广告

类型九年级数学圆证明题专题.doc

  • 上传人:w****g
  • 文档编号:1723975
  • 上传时间:2024-05-08
  • 格式:DOC
  • 页数:6
  • 大小:555.50KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    九年级 数学 证明 专题
    资源描述:
    . 圆证明专题 F 1.如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. 2.AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D。 (1)请写出四个正确的结论;(2)若BC=6,ED=2,求⊙O的半径。 C P B O A D 3.已知:如图,中,,以为直径的⊙O交于点,于点. (1)求证:是⊙O的切线; (2)若,求的值 4.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆。求证:(1)AC是⊙D的切线;(2)AB+EB=AC。 5.已知:⊙O的直径AB和弦CD,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M。求证:∠AMD=∠FMC。 A B D C O 6.已知是☉O的直径,是弦,切☉O于点,交的延长线于点,,.(1)求证:;(2)求☉O的半径. A O C B D 7.内接于⊙O,点在半径的延长线上,.(1)试判断直线与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧、线段和所围成的阴影部分面积(结果保留和根号). 8. 如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数. 9. 如图,已知点C、D在以O为圆心,AB为直径的半圆上,且于点M、于点F交BD于点E,,。 (1)求⊙的半径;(2)求证: 10、△ABC的内切圆⊙o与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长? 11、如图,已知是⊙O的直径,⊙O过的中点,且于点. (1)求证:是⊙O的切线;(2)若,,求⊙O的半径. A E D O B C 12.如图,已知⊙O是的直径,为弦,且平分,,垂足为. 求证:是⊙O的切线。 13. 如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30° (1)求证:BD是⊙O的切线;(2)AB=3CB吗?请说明理由。(选做) 14. 如图所示,⊙O 的半径是4,PA、PB分别与⊙O相切于点A、点B,若PA与PB之间的夹角∠APB=60°, (1)若点C是圆上的一点,试求∠APB的大小;(2)求△ABP的周长. 15、如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。(1)求证:AD=DC(2)求证:DE是的切线(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。 16.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B。小圆的切线AC与大圆相交于点D,且CO平分∠ACB。(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若,求大圆与小圆围成的圆环的面积。(结果保留π) C B O A D 17.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,过D作DE⊥AC,交AC于E,DE是⊙O的切线吗?为什么? 18.如图,AB是⊙O的直径,BC是弦,PA切⊙O于A,OP∥BC, 求证:PC是⊙O的切线。 19.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的直线交OA延长线于点R,且RP=RQ(1)求证:直线QR是⊙O的切线;(2)若OP=PA=1,试求RQ的长 20、如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)、求证:BC是⊙O的切线;(2)、设阴影部分的面积为a,b, ⊙O的面积为S,请写出S与a,b的关系式。 21. 如图,已知⊙O是的直径,为弦,且平分,,垂足为. 求证:是⊙O的切线;(12分) A O B C D 可编辑
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:九年级数学圆证明题专题.doc
    链接地址:https://www.zixin.com.cn/doc/1723975.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork