人教版八年级下册数学赤峰数学期末试卷(Word版含解析).doc
《人教版八年级下册数学赤峰数学期末试卷(Word版含解析).doc》由会员分享,可在线阅读,更多相关《人教版八年级下册数学赤峰数学期末试卷(Word版含解析).doc(31页珍藏版)》请在咨信网上搜索。
人教版八年级下册数学赤峰数学期末试卷(Word版含解析) 一、选择题 1.若代数式有意义,则的取值范围是( ) A. B. C.且 D.且 2.满足下述条件的三角形中,不是直角三角形的是( ) A.三条边长之比为1:: B.三条边长分别为1,,2 C.三个内角之比为3:4:5 D.两个内角分别为40°和50° 3.如图所示,在中,点E,D,F分别在边上,且.下列判断中,不正确的是( ) A.四边形是平行四边形 B.如果,那么四边形是矩形 C.如果平分,那么四边形是菱形 D.如果,那么四边形是菱形 4.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班平均得分( ) A.9 B.6.67 C.9.1 D.6.74 5.如图,在中,,,,点D在边上,,,垂足为点F,交于点E,则的长为( ) A.2 B. C. D. 6.如图,在菱形ABCD中,,对角线AC,BD相交于点O,过点O的直线交AD于点M,交BC于点N,下列结论:(1);(2);(3).其中正确结论的个数为( ) A.0个 B.1个 C.2个 D.3个 7.如图,在中,对角线,相交于点,点是的中点,若,则的长为( ) A.16 B.18 C.20 D.22 8.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为( ) A.3 B.2 C. D. 二、填空题 9.使式子有意义的的取值范围是______. 10.如图,菱形周长为40,对角线,则菱形的面积为______. 11.在中,,,,则线段AC的长为________. 12.如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为.则的值为______. 13.请写出一个一次函数表达式,使此函数满足:①y随x的增大而减小;②函数图象过点(-1,2),你写的函数表达式是_______. 14.如图,在矩形中,对角线与相交于点,,,则的长为________. 15.如图,将一块等腰直角三角板放置在平面直角坐标系中,,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,所在直线的函数表达式是,若保持的长不变,当点A在y轴的正半轴滑动,点C随之在x轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是_______. 16.如图,,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则线段的长为________. 三、解答题 17.计算 (1); (2); (3). 18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺) 19.如图是一个的正方形网格,已知每个小正方形的边长均为1,每个小正方形的顶点称为格点,请按要求解答下列问题: (1)如图,满足线段的格点共有______个; (2)试在图中画出一个格点,使其为等腰三角形,,且的内部只包含4个格点(不包含在边上的格点). 20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF. (1)求证:AF=DC; (2)若AB⊥AC,AB=8,AC=6,求BF的长. 21.阅读下面的材料,解答后面提出的问题: 黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+)(2-)=1,(+)(-)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:==,==7+4.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题: (1)4+的有理化因式是 ,将分母有理化得 ; (2)已知x=,y=,则= ; (3)已知实数x,y满足(x+)(y+)-2017=0,则x= ,y= . 22.在乡村道路建设过程中,甲、乙两村之间需要修建水泥路,甲、乙两村合作完成.已知甲村需要水泥70吨,乙村需要水泥110吨,A厂可提供100吨水泥,B厂可提供80吨水泥,两厂到两村的运费如表: 目的地 运费/(元/吨) 甲村 乙村 A厂 240 180 B厂 250 160 (1)设从A厂运往甲村水泥x吨,求运送的总费用y(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围; (2)请你设计出运费最低的运送方案,并求出最低运费. 23.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。在△ABC中,∠C=90°,则AC2+BC2=AB2.我们定义为“商高定理”。 (1)如图1,在△ABC中,∠C=90°中,BC=4,AB=5,试求AC=__________; (2)如图2,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2; (3)如图3,分别以Rt△ACB的直角边BC和斜边AB为边向外作正方形BCFG和正方形ABED,连结CE、AG、GE.已知BC=4,AB=5,求GE2的值. 24.如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上(),把线段绕点顺时针旋转得到线段,过点分别向轴,轴作垂线,垂足为,. (1)求四边形的面积; (2)若,求直线的表达式; (3)在(2)的条件下,点为延长线上一点,连接,作的平分线,交轴于点,若为等腰三角形,求点的坐标. 25.如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD. (1)①求证:四边形BFDE是菱形;②求∠EBF的度数. (2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由; (3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系. 26.如图,在Rt中,,,,动点D从点C出发,沿边向点B运动,到点B时停止,若设点D运动的时间为秒.点D运动的速度为每秒1个单位长度. (1)当时, , ; (2)用含t的代数式表示的长; (3)当点D在边CA上运动时,求t为何值,是以BD或CD为底的等腰三角形?并说明理由; (4)直接写出当是直角三角形时,t的取值范围 . 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式被开方数大于等于零及分式有意义的条件:分母不等于零解答. 【详解】 解:由题意得:, 得, 故选:B. 【点睛】 此题考查二次根式被开方数大于等于零及分式有意义的条件,熟记两个条件是解题的关键. 2.C 解析:C 【分析】 根据勾股定理的逆定理和三角形内角和定理对各选项进行逐一判断即可. 【详解】 解:A、∵12+()2=3=()2,∴能够成直角三角形,故本选项不符合题意; B、∵12+()2=4=22,∴能够成直角三角形,故本选项不符合题意; C、设∠A=3x°,∠B=4x°,∠C=5x°, ∵∠A+∠B+∠C=180°, ∴3x+4x+5x=180, 解得:x=15, ∴∠C=5x°=75°, 即此时三角形不是直角三角形,故本选项符合题意; D、两个内角分别为40°和50°,所以另一个内角是90°,是直角三角形,故本选项不符合题意; 故选:C. 【点睛】 本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,也考查了三角形的内角和定理. 3.D 解析:D 【解析】 【分析】 由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形,据此可以判断A正确;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形,故可以判断B选项;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,进而知∠FAD=∠ADF,AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形;如果AD⊥BC且当AB=AC时,那么AD平分∠BAC,则可得四边形AEDF是菱形,故知D选项不正确. 【详解】 解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形; 又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确; 如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF, ∴∠FAD=∠ADF, ∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,故C正确; 如果AD⊥BC且AB=AC,那么AD平分∠BAC,可得四边形AEDF是菱形.只有AD⊥BC,不能判断四边形AEDF是菱形,故D选项错误. 故选:D. 【点睛】 本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定,此题是道基础概念题,需要熟练掌握菱形的判定定理. 4.C 解析:C 【解析】 【分析】 根据加权平均数的定义列式计算即可. 【详解】 解:该班平均得分=9.1(分), 故选:C. 【点睛】 本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义. 5.B 解析:B 【分析】 连接DE,首先利用等腰三角形的性质,证明AE垂直平分BD,得出 再证明得出设则在Rt中利用勾股定理列方程即可求得BE的长. 【详解】 解:连接DE,如图, ∵ ∴AE垂直平分BD, ∴ 在和中, ∵ ∴ ∴ 在Rt中, ∴ 设则 在Rt中, ∵ ∴ 解得,, 故选:B. 【点睛】 本题考查的是等腰三角形的性质,线段的垂直平分线的性质、勾股定理、全等三角形的判定SSS,利用线段的垂直平分线的性质确定相等的线段,再根据勾股定理列方程是解决本题的关键.线段垂直平分线的性质:线段垂直平分线上的点,到线段两个端点的距离相等. 6.D 解析:D 【解析】 【分析】 由菱形的性质可得AO=CO,AD∥BC,AB=BC=AD,∠ACD∠BCD=40°,由“ASA”可得△AOM≌△CON,可得OM=ON,AM=CN,可得AM+BN=AB,即可求解. 【详解】 解:在菱形ABCD中,∠ABC=100°, ∴∠BCD=80°,AO=CO,AD∥BC,AB=BC=AD,∠ACD∠BCD=40°,故(1)正确; ∵AD∥BC, ∴∠DAC=∠BCA, 在△AOM和△CON中, , ∴△AOM≌△CON(ASA), ∴OM=ON,AM=CN, ∴AM+BN=BN+CN=BC=AB,故(2),(3)正确, 故选:D. 【点睛】 本题考查了菱形的性质,全等三角形的判定和性质,掌握菱形的性质是解题的关键. 7.A 解析:A 【解析】 【分析】 根据平行四边形的性质可得OB=OD,根据点 E 是 BC 的中点可得OE为△BCD的中位线,进而可得BC长. 【详解】 解:∵四边形ABCD是平行四边形, ∴OB=OD,AB=CD, ∵E是BC的中点, ∴OE是△BCD的中位线, ∴CD=2EO, ∵EO=8, ∴CD=2EO=16, ∴AB=CD=16, 故选:A. 【点睛】 此题主要考查了平行四边形的性质,以及三角形中位线的性质,掌握平行四边形的性质,三角形中位线的性质是解题关键. 8.D 解析:D 【分析】 设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论. 【详解】 解:设点C的横坐标为m, ∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m), ∵四边形ABCD为正方形, ∴BC∥x轴,BC=AB, 又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等, ∴点B的坐标为(﹣,﹣3m), ∴﹣﹣m=﹣3m, 解得:k=, 经检验,k=是原方程的解,且符合题意. 故选:D. 【点睛】 本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键. 二、填空题 9.且 【解析】 【分析】 根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得. 【详解】 由题意得:, 解得且, 故答案为:且. 【点睛】 本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.A 解析:96 【解析】 【分析】 由菱形的周长为40,对角线,可求得另一对角线的长,这个菱形的面积即可求解. 【详解】 解:∵菱形ABCD的周长为40, ∴菱形的边长BC=10, ∵BD=12, ∴OB=BD=6, ∴OC=, ∴BD=2OB=16, ∴S菱形ABCD=AC•BD=. 故答案为:96. 【点睛】 本题考查了菱形的性质、菱形面积的计算方法、勾股定理的应用,熟练掌握菱形的面积等于两条对角线长乘积的一半是解决问题的关键. 11. 【解析】 【分析】 根据勾股定理即可得出答案 【详解】 解:∵,,, ∴ 故答案为: 【点睛】 本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. 12.A 解析: 【分析】 依据矩形的性质即可得到的面积为12,再根,即可到的值. 【详解】 解:∵AB=6,BC=8, ∴矩形ABCD的面积为48, , ∴AO=DO==5, ∵对角线AC,BD交于点O, ∴, ∵ ,, ∴ ,即12=, ∴12 , ∴, ∴ 故答案:. 【点睛】 本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角,矩形的对角线相等且互相平分. 13.y=-2x或y=-x+1等(答案不唯一) 【解析】 【分析】 设一次函数解析式为y=kx+b(k≠0),由一次函数的性质结合一次函数图象上点的坐标特征,即可得出. 【详解】 解:设一次函数解析式为y=kx+b(k≠0). ∵一次函数的图象过点(-1,2),且y随x的增大而减小, ∴k<0, 令k=-1,则y=-x+b,将点(-1,2)代入可得:b=1, 故答案可以为:y=−x+1. 【点睛】 本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小.”是解题的关键. 14.A 解析: 【分析】 根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可. 【详解】 ∵四边形ABCD是矩形, ∴OA=OB=OC=OD, ∠BAD=90°, ∵ ∴△AOB是等边三角形, ∴OB=AB=1, ∴BD=2BO=2, 在Rt△BAD中, 故答案为 【点睛】 考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键. 15.【分析】 根据自变量与函数值得对应关系,可得A,C点坐标,根据勾股定理,可得AC的长度;根据全等三角形的判定与性质,可得CD,BD的长,可得B点坐标;首先取AC的中点E,连接BE,OE,OB,可求 解析: 【分析】 根据自变量与函数值得对应关系,可得A,C点坐标,根据勾股定理,可得AC的长度;根据全等三角形的判定与性质,可得CD,BD的长,可得B点坐标;首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离. 【详解】 解:当x=0时,y=2x+2=2, ∴A(0,2); 当y=2x+2=0时,x=-1, ∴C(-1,0). ∴OA=2,OC=1, ∴AC==, 如图所示,过点B作BD⊥x轴于点D. ∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°, ∴∠CAO=∠BCD. 在△AOC和△CDB中, , ∴△AOC≌△CDB(AAS), ∴CD=AO=2,DB=OC=1, OD=OC+CD=3, ∴点B的坐标为(-3,1). 如图所示.取AC的中点E,连接BE,OE,OB, ∵∠AOC=90°,AC=, ∴OE=CE=AC=, ∵BC⊥AC,BC=, ∴BE==, 若点O,E,B不在一条直线上,则OB<OE+BE=, 若点O,E,B在一条直线上,则OB=OE+BE=, ∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为, 故答案为:. 【点睛】 此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC长度的关键,又利用了勾股定理;求点B的坐标的关键是利用全等三角形的判定与性质得出CD,BD的长;求点B与原点O的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 16.【分析】 根据折叠性质和余角定理可知是等腰直角三角形,是直角三角形,运用勾股定理求出DF的值,最后用勾股定理得出的值. 【详解】 解:根据折叠的性质可知,,,,, ∴; ∵,(三角形外角定理), 解析: 【分析】 根据折叠性质和余角定理可知是等腰直角三角形,是直角三角形,运用勾股定理求出DF的值,最后用勾股定理得出的值. 【详解】 解:根据折叠的性质可知,,,,, ∴; ∵,(三角形外角定理), (、都是的余角,同角的余角相等), ∴, ∵在中,, ∴, ∴是等腰直角三角形,, ∵和互为补角, ∴, ∴,为直角三角形, ∵, ∴, ∵根据勾股定理求得, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查折叠性质与勾股定理的应用,掌握折叠性质及勾股定理,运用等面积法求出CE的值是解题关键. 三、解答题 17.(1);(2);(3)-2 【分析】 (1)先把二次根式化简,然后再进行二次根式的减法运算; (2)利用平方差公式及完全平方公式进行二次根式的运算即可; (3)先算乘方,然后再进行二次根式的混合运算 解析:(1);(2);(3)-2 【分析】 (1)先把二次根式化简,然后再进行二次根式的减法运算; (2)利用平方差公式及完全平方公式进行二次根式的运算即可; (3)先算乘方,然后再进行二次根式的混合运算即可. 【详解】 解:(1)原式=; (2)原式=; (3)原式=. 【点睛】 本题主要考查二次根式的运算及负指数幂,熟练掌握二次根式的运算及负指数幂是解题的关键. 18.55尺 【分析】 竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可. 【详解】 设竹子折断处离地面x尺,则斜边为(10﹣x)尺, 根据勾股定理得: 解析:55尺 【分析】 竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可. 【详解】 设竹子折断处离地面x尺,则斜边为(10﹣x)尺, 根据勾股定理得:x2+32=(10﹣x)2. 解得:x=4.55, 答:折断处离地面的高度为4.55尺. 【点睛】 此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题. 19.(1)3;(2)见解析. 【解析】 【分析】 (1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答; (2)根据题意画出图形即可. 【详解】 解:(1)∵10=12+32 ∴如图: ∴满足 解析:(1)3;(2)见解析. 【解析】 【分析】 (1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答; (2)根据题意画出图形即可. 【详解】 解:(1)∵10=12+32 ∴如图: ∴满足线段的格点共有3个 故填3; (2)画图如下(答案不唯一): 【点睛】 本题主要考查了勾股定理和等腰三角形的定义,掌握勾股定理成为解答本题的关键. 20.(1)见解析;(2) 【分析】 (1)由“AAS”可证△AFE≌△DBE,可得AF=BD=DC; (2)先证四边形AOFH是矩形,可得AH=FO=4,AO=FH=3,再在直角三角形FHB中,由勾股定 解析:(1)见解析;(2) 【分析】 (1)由“AAS”可证△AFE≌△DBE,可得AF=BD=DC; (2)先证四边形AOFH是矩形,可得AH=FO=4,AO=FH=3,再在直角三角形FHB中,由勾股定理可求解. 【详解】 证明:(1)∵AF∥BC, ∴∠AFE=∠DBE, ∵E是AD的中点,AD是BC边上的中线, ∴AE=DE,BD=CD, 在和中 , ∴△AFE≌△DBE(AAS), ∴AF=BD, ∴AF=DC; (2)解:如图,连接DF交AC于点O,过点F作FH⊥AB,交BA的延长线于H, ∵AF∥BC,AF=CD, ∴四边形ADCF是平行四边形, ∵AB⊥AC,AD是中线, ∴AD=CD, ∴四边形ADCF是菱形, ∴AC⊥DF,AO=CO=3,OF=OD=DF, ∵AF∥BC,AF=BD, ∴四边形AFDB是平行四边形, ∴DF=AB=8, ∴OF=OD=4, ∵FH⊥AB,AB⊥AC,AC⊥DF, ∴四边形AOFH是矩形, ∴AH=FO=4,AO=FH=3, ∴, ∵FH⊥AB, ∴三角形FHB是直角三角形, ∴在中,根据勾股定理, . 【点睛】 本题考查了全等三角形的判定与性质,平行四边形的判定,菱形的判定,矩形的判定,直角三角形的性质,勾股定理,考查知识点较多,综合性较强,解题的关键是要掌握并灵活运用这些知识点. 21.(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ 解析:(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ ∴ ∴ , 整理得: ∴ ,x=y 将x=y代入可得:, .故答案为,. 点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键. 22.(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元. 【分析】 (1 解析:(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元. 【分析】 (1)由从A厂运往甲村水泥x吨,根据题意首先求得从A厂运往乙村水泥(100-x)吨,B厂运往甲村水泥(70-x)吨,B厂运往乙村水泥吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式; (2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最低运费. 【详解】 (1)设从A厂运往甲村水泥x吨,则A厂运往乙村水泥(100﹣x) 吨,B厂运往甲村水泥(70﹣x)吨,B厂运往乙村水泥110﹣(100﹣x)=(10+x)吨, ∴y=240x+180(100﹣x)+250(70﹣x)+160(10+x)=﹣30x+37100,x的取值范围是0≤x≤70, ∴y=﹣30x+37100(0≤x≤70); (2)∵y=﹣30x+37100(0≤x≤70),﹣30<0, ∴y随x的增大而减小, ∵0≤x≤70, ∴当x=70时,总费用最低, 最低运费为:﹣30×70+37100=35000 (元), ∴最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元. 【点睛】 本题主要考查了一次函数的实际应用问题,解决本题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解. 23.(1)3;(2)见解析;(2)73 【分析】 (1)由勾股定理得出AC==3; (2)由勾股定理得出OD2+OA2=AD2,OD2+OC2=CD2,OB2+OC2=BC2,OA2+OB2=AB2,则 解析:(1)3;(2)见解析;(2)73 【分析】 (1)由勾股定理得出AC==3; (2)由勾股定理得出OD2+OA2=AD2,OD2+OC2=CD2,OB2+OC2=BC2,OA2+OB2=AB2,则AB2+CD2=OA2+OB2+OD2+OC2,AD2+BC2=OD2+OA2+OB2+OC2,即可得出结论; (3)连接CG、AE,设AG交CE于I,AB交CE于J,由正方形的性质得出∠GBC=∠EBA=90°,AB=BE=5,BG=BC=4,证出∠ABG=∠EBC,由SAS证得△ABG≌△EBC得出∠BAG=∠BEC,则∠EBJ=∠AIJ=90°,得出AG⊥CE,由(2)可得AC2+GE2=CG2+AE2,由勾股定理得出CG2=BC2+BG2,即CG2=42+42=32,AE2=BE2+AB2,即AE2=52+52=50,AB2=AC2+BC2,即52=AC2+42,推出AC2=9,代入AC2+GE2=CG2+AE2 ,即可得出结果. 【详解】 解:(1):∵在△ABC中,∠C=90°中,BC=4,AB=5, ∴AC==3, 故答案为:3; (2)证明:在Rt△DOA中,∠DOA=90°, ∴OD2+OA2=AD2, 同理:OD2+OC2=CD2,OB2+OC2=BC2,OA2+OB2=AB2, ∴AB2+CD2=OA2+OB2+OD2+OC2,AD2+BC2=OD2+OA2+OB2+OC2, ∴AB2+CD2=AD2+BC2 ; (3)解:连接CG、AE,设AG交CE于I,AB交CE于J,如图3所示: ∵四边形BCFG和四边形ABED都是正方形, ∴∠GBC=∠EBA=90°,AB=BE=5,BG=BC=4, ∴∠GBC+∠CBA=∠EBA+∠CBA, ∴∠ABG=∠EBC, 在△ABG和△EBC中, , ∴△ABG≌△EBC(SAS), ∴∠BAG=∠BEC, ∵∠AJI=∠EJB, ∴∠EBJ=∠AIJ=90°, ∴AG⊥CE, 由(2)可得:AC2+GE2=CG2+AE2, 在Rt△CBG中,CG2=BC2+BG2, 即CG2=42+42=32, 在Rt△ABE中,AE2=BE2+AB2, 即AE2=52+52=50, 在Rt△ABC中,AB2=AC2+BC2, 即52=AC2+42, ∴AC2=9, ∵AC2+GE2=CG2+AE2 , 即9+GE2=32+50, ∴GE2=73. 【点睛】 本题是四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理的知识;熟练掌握正方形的性质与勾股定理是解题的关键. 24.(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求 解析:(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求出的值,即可得到点的坐标,再设直线的解析式为,将、两点的坐标代入即可; (3)设点坐标为,因为平分,所以,最后分三种情况进行讨论即可. 【详解】 (1)∵, ∴, 连接,作,交的延长线于点,如图, ∴, ∴, ∵, 即, 在中,, ∵ , ∴, 又∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∴, ∴; (2) 设, 由(1)可知,, ∵, ∴, ∵与都是直角三角形,且, ∴, ∴, ∴,, ∵, ∴, 解得, ∴, 又∵, 设直线的解析式为, 则,解得, ∴直线的解析式为; (3)设点坐标为, ∵平分, ∴, ①当时,则, ∴, ∴与重合, ∴; ②当时, 过点作,垂足为, 则,, 又∵,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, 在中,, 在中,, ∴, ∴, 解得, ∴; ③当时,延长交轴于点, ∵,且 ∴, ∴, 过点作,垂足为, 则,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, ∴, ∵, 设直线的解析式为, 则,解得, ∴直线解析式为, 当时,解得, ∴. 综上所述,当为等腰三角形时,点坐标为或或. 【点睛】 本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想. 25.(1)①证明见解析;②;(2);(3). 【分析】 (1)①由,推出,,推出四边形是平行四边形,再证明即可. ②先证明,推出,延长即可解决问题. (2).只要证明是等边三角形即可. (3)结论:.如 解析:(1)①证明见解析;②;(2);(3). 【分析】 (1)①由,推出,,推出四边形是平行四边形,再证明即可. ②先证明,推出,延长即可解决问题. (2).只要证明是等边三角形即可. (3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题. 【详解】 (1)①证明:如图1中, 四边形是矩形, ,, , 在和中, , , ,, 四边形是平行四边形, ,, , 四边形是菱形. ②平分, , , , , , ,, , . (2)结论:. 理由:如图2中,延长到,使得,连接. 四边形是菱形,, ,, , 在和中, , , ,, , , , 是等边三角形, , 在和中, , , ,,, , , , , 是等边三角形, 在中,,, , . (3)结论:. 理由:如图3中,将绕点逆时针旋转得到, , 四点共圆, ,, , , , 在和中, , , , ,, , ,, . 【点睛】 本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题. 26.(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒. 【分析】 (1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案; 解析:(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒. 【分析】 (1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案; (2)由题意,可分为:,两种情况,分别表示出的长度即可; (3)分①CD=BC时,CD=3;②BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,即可得到答案. (4)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D在线段AB上运动,然后即可得解; 【详解】 解:(1)在Rt中,,,, ∴, ∵点D运动的速度为每秒1个单位长度, ∴当,点D在线段CA上;当,点D在线段AB上; ∴当时,点D在线段AB上, ∴,; 故答案为:1;3; (2)根据题意, 当时,点D在线段CA上,且, ∴; 当时,点D在线段AB上, ∴; (3)①CD=BC时,CD=3,t=3÷1=3; ②BD=BC时,如图,过点B作BF⊥AC于F, 设,则, ∴, ∴, ∴CD=2CF=1.8×2=3.6, ∴t=3.6÷1=3.6, 综上所述,t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形. (4)①∠CDB=90°时,S△ABC=AC•BD=AB•BC, 即=×4×3, 解得BD=2.4, ∴CD=, ∴t=1.8÷1=1.8秒; ②∠CBD=90°时,点D在线段AB上运动, ∴ 综上所述,t=1.8或秒; 故答案为:或秒; 【点睛】 本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,(3)(4)难点在于要分情况讨论,作出图形更形象直观.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学 赤峰 期末试卷 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文