2024年人教版七7年级下册数学期末复习含解析.doc
《2024年人教版七7年级下册数学期末复习含解析.doc》由会员分享,可在线阅读,更多相关《2024年人教版七7年级下册数学期末复习含解析.doc(28页珍藏版)》请在咨信网上搜索。
2024年人教版七7年级下册数学期末复习含解析 一、选择题 1.下列图形中,和不是内错角的是( ) A. B. C. D. 2.下列四幅名车标志设计中能用平移得到的是( ) A.奥迪 B.本田 C.奔驰 D.铃木 3.点在平面直角坐标系中所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,假命题是( ) A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 B.在同一平面内,过一点有且只有一条直线与已知直线垂直 C.两条直线被第三条直线所截,同旁内角互补 D.两点的所有连线中,线段最短 5.如图,已知,平分,平分,则下列判断:①;②平分;③;④中,正确的有( ) A.1个 B.2个 C.3个 D.4个 6.若a2=16,=2,则a+b的值为( ) A.12 B.4 C.12或﹣4 D.12或4 7.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线,点O在直线EF上,则.以上结论正确的个数是( ) A.1个 B.2个 C.3个 D.4个 8.如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至…依照此规律跳动下去,点第124次跳动至的坐标为( ) A. B. C. D. 九、填空题 9.9的算术平方根是 . 十、填空题 10.平面直角坐标系中,点关于y轴的对称点的坐标为________. 十一、填空题 11.如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为12,BC长为5,则△ABC的周长__. 十二、填空题 12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______. 十三、填空题 13.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______. 十四、填空题 14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______. 十五、填空题 15.在平面直角坐标系中,若在轴上,则线段长度为________. 十六、填空题 16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________. 十七、解答题 17.计算. (1); (2). 十八、解答题 18.求下列各式中的值: (1);(2);(3). 十九、解答题 19.请补全推理依据:如图,已知:,,求证:. 证明: ∵(已知) ∴( ) ∴( ) 又∵(已知) ∴( ) ∴( ) ∴( ) 二十、解答题 20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′, (1)画出△A′B′C′,写出A′、B′、C′的坐标; (2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标. 二十一、解答题 21.(1)如果是的整数部分,是的小数部分,求的平方根. (2)当为何值时,关于的方程的解与方程的解互为相反数. 二十二、解答题 22.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上. (1)求正方形的面积和边长; (2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标. 二十三、解答题 23.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN. (1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°; (2)如图2,∠BMH和∠HND的角平分线相交于点E. ①请直接写出∠MEN与∠MHN的数量关系: ; ②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论) 二十四、解答题 24.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出. (1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由; (2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程. (3)若,,,请直接写出此时的度数. 二十五、解答题 25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答. 【详解】 解:A、∠1和∠2是内错角,故选项不合题意; B、∠1和∠2不是内错角,故选项符合题意; C、∠1和∠2是内错角,故选项不合题意; D、∠1和∠2是内错角,故选项不合题意; 故选B. 【点睛】 本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义. 2.A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得 解析:A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得到的,故的符合题意; C、不是经过平移得到的,故不符合题意; D、不是经过平移得到的,故不符合题意; 故选A. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.B 【分析】 根据坐标的特点即可求解. 【详解】 点在平面直角坐标系中所在的象限是第二象限 故选B. 【点睛】 此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.C 【分析】 分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【详解】 A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行, 选项A是真命题,故不符合题意; B.在同一平面内,过一点有且只有一条直线与已知直线垂直, 选项B是真命题,故不符合题意; C.两条直线被第三条直线所截,同旁内角不一定互补, 选项C是假命题,故符合题意; D. 两点的所有连线中,线段最短, 选项D是真命题,故不符合题意. 故选:C. 【点睛】 本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理. 5.B 【分析】 根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可. 【详解】 ∵, ∴,∴正确; ∵, ∴, ∵平分,平分, ∴,, ∴, ∴, ∴, ∴根据已知不能推出,∴错误;错误; ∵,, ∴, ∵, ∴, ∴,∴正确; 即正确的有个, 故选:. 【点睛】 本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键. 6.D 【分析】 根据平方根和立方根的意义求出a、b即可. 【详解】 解:∵a2=16, ∴a=±4, ∵=2, ∴b=8, ∴a+b=4+8或﹣4+8, 即a+b=12或4. 故选:D. 【点睛】 本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个. 7.B 【分析】 如图1所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠C+∠CEF=180°,则∠A+∠C+∠AEC=360°,故①错误;如图2所示,过点P作PE//AB,由平行线的性质即可得到∠A=∠APE=180°,∠C=∠CPE,再由∠APC=∠APE=∠CPE,即可得到∠APC=∠A-∠C,即可判断②;如图3所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠1=∠CEF,再由∠AEF+∠CEF=∠AEC,即可判断③ ;由平行线的性质即可得到,,再由,即可判断④. 【详解】 解:①如图所示,过点E作EF//AB, ∵AB//CD, ∴AB//CD//EF, ∴∠A+∠AEF=180°,∠C+∠CEF=180°, ∴∠A+∠AEF+∠C+∠CEF=360°, 又∵∠AEF+∠CEF=∠AEC, ∴∠A+∠C+∠AEC=360°,故①错误; ②如图所示,过点P作PE//AB, ∵AB//CD, ∴AB//CD//PE, ∴∠A=∠APE=180°,∠C=∠CPE, 又∵∠APC=∠APE=∠CPE, ∴∠APC=∠A-∠C,故②正确; ③如图所示,过点E作EF//AB, ∵AB//CD, ∴AB//CD//EF, ∴∠A+∠AEF=180°,∠1=∠CEF, 又∵∠AEF+∠CEF=∠AEC, ∴180°-∠A+∠1=∠AEC,故③错误; ④∵, ∴,, ∵, ∴, ∴,故④正确; 故选B 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质 8.A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标 解析:A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), … 第2n次跳动至点的坐标是(n+1,n), ∴第124次跳动至点的坐标是(63,62). 故选:A. 【点睛】 本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 九、填空题 9.【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 解析:【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 十、填空题 10.(3,-1) 【分析】 让纵坐标不变,横坐标互为相反数可得所求点的坐标. 【详解】 解:∵-3的相反数为3, ∴所求点的横坐标为3,纵坐标为-1, 故答案为(3,-1). 【点睛】 本题考查关于y轴 解析:(3,-1) 【分析】 让纵坐标不变,横坐标互为相反数可得所求点的坐标. 【详解】 解:∵-3的相反数为3, ∴所求点的横坐标为3,纵坐标为-1, 故答案为(3,-1). 【点睛】 本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变. 十一、填空题 11.17 【详解】 ∵0B、OC为△ABC的角平分线, ∴∠ABO=∠OBC,∠ACO=∠BCO, ∵DE∥BC, ∴∠DOB=∠OBC,∠EOC=∠OCB, ∴∠ABO=∠DOB,∠ACO=∠EOC, 解析:17 【详解】 ∵0B、OC为△ABC的角平分线, ∴∠ABO=∠OBC,∠ACO=∠BCO, ∵DE∥BC, ∴∠DOB=∠OBC,∠EOC=∠OCB, ∴∠ABO=∠DOB,∠ACO=∠EOC, ∴BD=OD,EC=OE, ∴DE=OD+OE=BD+EC; ∵△ADE的周长为12, ∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12, ∵BC=7, ∴△ABC的周长为:AB+AC+BC=12+5=17. 故答案为17. 十二、填空题 12.【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三 解析: 【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 十三、填空题 13.68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF 解析:68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF=∠DEF=56°, ∴∠DEG=112°, ∴∠AEG=180°-112°=68°. 故答案为:68°. 【点睛】 本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等. 十四、填空题 14.255 【分析】 根据[a]的含义求出这个数的范围,再求最大值. 【详解】 解:设这个数是p, ∵[x]=1 .∴1≤x<2. ∴1≤<2. ∴1≤m<4. ∴1≤<16. ∴1≤p<256. ∵p 解析:255 【分析】 根据[a]的含义求出这个数的范围,再求最大值. 【详解】 解:设这个数是p, ∵[x]=1 .∴1≤x<2. ∴1≤<2. ∴1≤m<4. ∴1≤<16. ∴1≤p<256. ∵p是整数. ∴p的最大值为255. 故答案为:255. 【点睛】 本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键. 十五、填空题 15.5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查 解析:5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数. 十六、填空题 16.【分析】 由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果. 【详解】 ∵,,, ∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析: 【分析】 由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果. 【详解】 ∵,,, ∴根据点的平移规律,可分别得:,,,,,,,,…,,,, ∵2021=505×4+1 ∴的横坐标为2×505=1010,纵坐标为1 即 故答案为: 【点睛】 本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律. 十七、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 十八、解答题 18.(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平 解析:(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键. 十九、解答题 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180 解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180°(已知), ∴AD∥EF(同旁内角互补,两直线平行), ∴∠3=∠D(两直线平行,同位角相等), 又∵∠3=∠A(已知), ∴∠D=∠A(等量代换),, ∴AB∥CD(内错角相等,两直线平行), ∴∠B=∠C(两直线平行,内错角相等). 故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键. 二十、解答题 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12). 【分析】 (1)分别作出A,B,C的对应点A′,B′,C′即可解决问题; (2)设P(0,m 解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12). 【分析】 (1)分别作出A,B,C的对应点A′,B′,C′即可解决问题; (2)设P(0,m),构建方程解决问题即可. 【详解】 解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2); (2)设P(0,m), 由题意:×4×|m+2|=4××4×3, 解得m=10或-12, ∴P(0,10)或(0,-12). 【点睛】 本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质. 二十一、解答题 21.(1)±3;(2)m=-4 【分析】 (1)估算,得到的范围,从而确定x、y的值,再代入计算即可. (2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可. 【详 解析:(1)±3;(2)m=-4 【分析】 (1)估算,得到的范围,从而确定x、y的值,再代入计算即可. (2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可. 【详解】 解:(1)∵, ∴, ∴, ∴x=6,y=, ∴=9, ∴的的平方根为±3; (2), 解得:x=-9, ∴的解为x=9,代入, 得, 解得:m=-4. 【点睛】 本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解. 二十二、解答题 22.(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标 解析:(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标即可. 【详解】 解:(1)正方形的面积, 正方形边长为; (2)建立如图平面直角坐标系, 则,,,. 【点睛】 本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键. 二十三、解答题 23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即 解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证. (2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°. ②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数. 【详解】 解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1 ∵EP∥AB且ME平分∠BMH, ∴∠MEQ=∠BME=∠BMH. ∵EP∥AB,AB∥CD, ∴EP∥CD,又NE平分∠GND, ∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等) ∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND). ∴2∠MEN=∠BMH+∠GND. ∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH. ∴∠DHN=∠BMH﹣∠MHN. ∴∠GND+∠BMH﹣∠MHN=180°, 即2∠MEN﹣∠MHN=180°. (2)①:过点H作GI∥AB.如答图2 由(1)可得∠MEN=(∠BMH+∠HND), 由图可知∠MHN=∠MHI+∠NHI, ∵GI∥AB, ∴∠AMH=∠MHI=180°﹣∠BMH, ∵GI∥AB,AB∥CD, ∴GI∥CD. ∴∠HNC=∠NHI=180°﹣∠HND. ∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND). 又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN, ∴∠BMH+∠HND=360°﹣∠MHN. 即2∠MEN+∠MHN=360°. 故答案为:2∠MEN+∠MHN=360°. ②:由①的结论得2∠MEN+∠MHN=360°, ∵∠H=∠MHN=140°, ∴2∠MEN=360°﹣140°=220°. ∴∠MEN=110°. 过点H作HT∥MP.如答图2 ∵MP∥NQ, ∴HT∥NQ. ∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补). ∵MP平分∠AMH, ∴∠PMH=∠AMH=(180°﹣∠BMH). ∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH. ∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°. ∵∠ENH=∠HND. ∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°. ∴∠ENQ+(HND+∠BMH)=130°. ∴∠ENQ+∠MEN=130°. ∴∠ENQ=130°﹣110°=20°. 【点睛】 本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 二十四、解答题 24.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C 解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED; (2)根据题意作AB∥CD,即可∠B=∠C=35°; (3)分别画图,根据平行线的性质计算出∠B的度数. 【详解】 解:(1)AB平行于ED,理由如下: 如图2,过点C作CF∥AB, ∴∠BCF=∠B=50°, ∵∠BCD=85°, ∴∠FCD=85°-50°=35°, ∵∠D=35°, ∴∠FCD=∠D, ∴CF∥ED, ∵CF∥AB, ∴AB∥ED; (2)如图,即为所求作的图形. ∵AB∥CD, ∴∠ABC=∠C=35°, ∴∠B的度数为:35°; ∵A′B∥CD, ∴∠ABC+∠C=180°, ∴∠B的度数为:145°; ∴∠B的度数为:35°或145°; (3)如图2,过点C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∴∠B=∠BCF=50°. 答:∠B的度数为50°. 如图5,过C作CF∥AB,则AB∥CF∥CD, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∵AB∥CF, ∴∠B+∠BCF=180°, ∴∠B=130°; 如图6,∵∠C=85°,∠D=35°, ∴∠CFD=180°-85°-35°=60°, ∵AB∥DE, ∴∠B=∠CFD=60°, 如图7,同理得:∠B=35°+85°=120°, 综上所述,∠B的度数为50°或130°或60°或120°. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用. 二十五、解答题 25.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角 解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案. 【详解】 (1)证明:∵在中,, ∴, ∵BD是的角平分线, ∴, ∴, ∴是“准互余三角形”; (2)①∵, ∴, ∴是“准互余三角形”, 故①正确; ②∵, , ∴, ∴不是“准互余三角形”, 故②错误; ③设三角形的三个内角分别为,且, ∵三角形是“准互余三角形”, ∴或, ∴, ∴, ∴“准互余三角形”一定是钝角三角形, 故③正确; 综上所述,①③正确, 故答案为:①③; (3)∠APB的度数是10°或20°或40°或110°; 如图①, 当2∠A+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A=20°, ∴∠APB=110°; 如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, ∴∠APB=40°; 如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠APB=20°; 如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, 所以∠A=40°, 所以∠APB=10°; 综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”. 【点睛】 本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版七 年级 下册 数学 期末 复习 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文