2022年人教版七7年级下册数学期末考试试卷及解析.doc
《2022年人教版七7年级下册数学期末考试试卷及解析.doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末考试试卷及解析.doc(24页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末考试试卷及解析 一、选择题 1.下列所示的四个图形中,和不是同位角的是( ) A.① B.② C.③ D.④ 2.下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点(﹣1,+1)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列句子中,属于命题的是( ) ①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线. A.①④ B.①②④ C.①②③ D.②③ 5.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于( ) A.30° B.25° C.35° D.40° 6.下列说法不正确的是( ) A.的平方根是± B.﹣9是81的平方根 C.0.4的算术平方根是0.2 D.=﹣3 7.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为( ) A.10° B.14° C.20° D.31° 8.如图,一个机器人从点出发,向正西方向走到达点;再向正北方向走到达点,再向正东方向走到达点,再向正南方向走到达点,再向正西方向走到达点,…按如此规律走下去,当机器人走到点时,点的坐标为( ) A. B. C. D. 九、填空题 9.若=0,则=________ . 十、填空题 10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____. 十一、填空题 11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________. 十二、填空题 12.如图,,,,则的度数为___________. 十三、填空题 13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________. 十四、填空题 14.材料:一般地,n个相同因数a相乘:记为.如,此时3叫做以2为底的8的对数,记为(即).那么_____,_____. 十五、填空题 15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________. 十六、填空题 16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______. 十七、解答题 17.计算: (1) (2) (3) (4) 十八、解答题 18.求满足下列各式的未知数. (1). (2). 十九、解答题 19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据) 解:∵∠1=∠2(已知) ∴CF//BD( ) ∴∠3+∠CAB=180°( ) ∵∠3=∠C(已知) ∴∠C+∠CAB=180°(等式的性质) ∴AB//CD( ) ∴∠4=∠EGA(两直线平行,同位角相等) ∵∠4=∠5(已知) ∴∠5=∠EGA(等量代换) ∴ED//FB( ) 二十、解答题 20.如图,在平面直角坐标系中,,,.中任意一点经平移后对应点为,将作同样的平移得到. (1)请画出并写出点,,的坐标; (2)求的面积; (3)若点在轴上,且的面积是1,请直接写出点的坐标. 二十一、解答题 21.已知的平方根是的立方根是是的整数部分,求的算术平方根. 二十二、解答题 22.求下图的方格中阴影部分正方形面积与边长. 二十三、解答题 23.已知,AB∥DE,点C在AB上方,连接BC、CD. (1)如图1,求证:∠BCD+∠CDE=∠ABC; (2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系; (3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值. 二十四、解答题 24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,. (1)将直角如图1位置摆放,如果,则______; (2)将直角如图2位置摆放,N为AC上一点,,请写出与之间的等量关系,并说明理由. (3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论. 二十五、解答题 25.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设. (1)如图①,当点在边上,且时,则__________,__________; (2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由; (3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 【详解】 解:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选:C. 【点睛】 本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角. 2.B 【分析】 根据平移的概念观察即可 【详解】 解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】 本题考查 解析:B 【分析】 根据平移的概念观察即可 【详解】 解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】 本题考查平移的概念,考查观察能力 3.B 【分析】 根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答. 【详解】 解:≥0, ∴+1>0, ∴点(-1,+1)一定在第二象限, 故选B. 【点睛】 本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可. 【详解】 解: ①三角形的内角和等于180°,是三角形内角和定理,是命题; ②对顶角相等,是对顶角的性质,是命题; ③过一点作已知直线的垂线,是作图,不是命题; ④两点确定一条直线,是直线的性质,是命题, 综上所述,属于命题是①②④. 故选:B. 【点睛】 此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断. 5.B 【分析】 根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可. 【详解】 解:∵AB∥CD,∠3=130°, ∴∠GAB=∠3=130°, ∵∠BAE+∠GAB=180°, ∴∠BAE=180°﹣∠GAB=180°﹣130°=50°, ∵∠1=∠2, ∴∠2=∠BAE=×50°=25°. 故选:B. 【点睛】 此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键. 6.C 【分析】 根据立方根与平方根的定义即可求出答案. 【详解】 解:0.4的算术平方根为 ,故C错误, 故选C. 【点睛】 考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型. 7.B 【分析】 根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ADC=30°, 又∵直角三角形ADE中,∠ADE=45°, ∴∠1=45°-31°=14°, 故选:B. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 8.A 【分析】 先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可. 【详解】 解:∵一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上, ∴A1(-2,0) 从点A2 解析:A 【分析】 先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可. 【详解】 解:∵一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上, ∴A1(-2,0) 从点A2开始, 由点再向正北方向走到达点,A2(-2,4), 由点再向正东方向走到达点,A3(6-2,4)即(4,4), 由点再向正南方向走到达点,A4(4,4-8)即(4,-4), 由点A4再向正西方向走到达点,A5(4-10,-4)即(-6,-4), 由点A5再向正北方向走到达点A6,A6(-6,12-4)即(-6,8), 由点A6再向再向正东方向走到达点A7,A7(14-6,8)即(8,8), 由点A7再向正南方向走到达点,A8(8,8-16)即(8,-8), 观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为, 所以在第四象限,坐标为. 故选择A. 【点睛】 本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键. 九、填空题 9.9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 解析:9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 十、填空题 10.(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要 解析:(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键. 十一、填空题 11.10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即 解析:10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解. 【详解】 解:当高AD在△ABC的内部时. ∵∠B=40°,∠C=60°, ∴∠BAC=180°-40°-60°=80°, ∵AE平分∠BAC, ∴∠BAE=∠BAC=40°, ∵AD⊥BC, ∴∠BDA=90°, ∴∠BAD=90°-∠B=50°, ∴∠EAD=∠BAD-∠BAE=50°-40°=10°. 当高AD在△ABC的外部时. 同法可得∠EAD=10°+30°=40° 故答案为10°或40°. 【点睛】 此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数 十二、填空题 12.30 【分析】 过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠ 解析:30 【分析】 过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论. 【详解】 解:过点C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°, ∴∠BCD=∠BCF-∠DCF=70°-40°=30°. 故答案为:30 【点睛】 本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行. 十三、填空题 13.120 【分析】 由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而 解析:120 【分析】 由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解. 【详解】 解:Rt△ABE中,∠ABE=30°, ∴∠AEB=60°; 由折叠的性质知:∠BEF=∠DEF; 而∠BED=180°-∠AEB=120°, ∴∠BEF=60°; 由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°, ∴BE∥C′F, ∴∠EFC′=180°-∠BEF=120°. 故答案为:120. 【点睛】 本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 十四、填空题 14.3; . 【分析】 由可求出,由,可分别求出,,继而可计算出结果. 【详解】 解:(1)由题意可知:, 则, (2)由题意可知: ,, 则,, ∴, 故答案为:3;. 【点睛】 本题主 解析:3; . 【分析】 由可求出,由,可分别求出,,继而可计算出结果. 【详解】 解:(1)由题意可知:, 则, (2)由题意可知: ,, 则,, ∴, 故答案为:3;. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键. 十五、填空题 15.(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐 解析:(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】 本题考查点的坐标,利用数形结合思想解题是关键. 十六、填空题 16.(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点 解析:(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环, 2021÷6=336…5, 即点P2021的坐标是(4,3). 故答案为:(4,3). 【点睛】 本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律. 十七、解答题 17.(1)6;(2)-4;(3);(4). 【分析】 (1)利用算术平方根和立方根、绝对值化简,再进一步计算即可; (2)利用算术平方根和立方根化简,再进一步计算即可; (3)类比单项式乘多项式展开计算 解析:(1)6;(2)-4;(3);(4). 【分析】 (1)利用算术平方根和立方根、绝对值化简,再进一步计算即可; (2)利用算术平方根和立方根化简,再进一步计算即可; (3)类比单项式乘多项式展开计算; (4)利用绝对值的性质化简,再进一步合并同类二次根式. 【详解】 解:(1) =3+2+1 =6; (2) =2-3-3 =-4; (3) = ; (4) = =. 故答案为(1)6;(2)-4;(3);(4). 【点睛】 本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算. 十八、解答题 18.(1)或;(2) 【分析】 (1)根据平方根的定义直接开平方求解即可; (2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), , 解得. 解析:(1)或;(2) 【分析】 (1)根据平方根的定义直接开平方求解即可; (2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), , 解得. 【点睛】 本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义. 十九、解答题 19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平 解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平行), (两直线平行,同旁内角互补), (已知), (等式的性质), (同旁内角互补,两直线平行), (两直线平行,同位角相等), (已知), (等量代换), (同位角相等,两直线平行). 故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题 20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或 【分析】 (1)依据点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC作同样的平移即可得到△A1B 解析:(1)图见解析,,,;(2)3.5;(3)点的坐标为或 【分析】 (1)依据点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC作同样的平移即可得到△A1B1C1; (2)利用割补法进行计算,即可得到△A1B1C1的面积; (3)设P(0,y),依据△A1B1P的面积是1,即可得到y的值,进而得出点P的坐标. 【详解】 解:(1)如图所示,即为所求;,,; (2)的面积为:; (3)设,则, ∵的面积是1, ∴, 解得, ∴点的坐标为或. 【点睛】 本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.【分析】 首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案. 【详解】 解:根据题意, 解析: 【分析】 首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案. 【详解】 解:根据题意,可得2a−1=9, a+3b−1=-8; 解得:a=5,b=-4; 又∵6<<7, 可得c=6; ∴a+2b+c=3; ∴a+2b+c的算术平方根为. 【点睛】 此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法. 二十二、解答题 22.8; 【分析】 用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可. 【详解】 解:正方形面积=4×4-4××2×2=8; 正方形的边 解析:8; 【分析】 用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可. 【详解】 解:正方形面积=4×4-4××2×2=8; 正方形的边长==. 【点睛】 本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为. 二十三、解答题 23.(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质 解析:(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论; (3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案. 【详解】 证明:(1)如图,过点作, , , , ,即, , ; (2)如图,过点作, , , , ,即, , , , , ; (3)如图,过点作,延长至点, , , , , 平分,平分, , 由(2)可知,, , 又, . 【点睛】 本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 二十四、解答题 24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 【分析】 (1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案; (2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论; (3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可. 【详解】 解:(1)如图1,作CP∥a, ∵, ∴CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∴∠BCP=180°﹣∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°﹣∠CEF=90°, ∵∠AOG=46°, ∴∠CEF=136°, 故答案为136°; (2)∠AOG+∠NEF=90°. 理由如下:如图2,作CP∥a, 则CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, 而∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°; (3)如图3,当点P在GF上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠GOP+∠PQF, ∴∠OPQ=140°﹣∠POQ+∠PQF; 如图4,当点P在线段GF的延长线上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴140°﹣∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键. 二十五、解答题 25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC 解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°; (2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE; (3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE. 【详解】 解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°. ∵在△ABC中,∠BAC=100°,∠ABC=∠ACB, ∴∠ABC=∠ACB=40°, ∴∠ADC=∠ABC+∠BAD=40°+60°=100°. ∵∠DAC=40°,∠ADE=∠AED, ∴∠ADE=∠AED=70°, ∴∠CDE=∠ADC-∠ADE=100°-70°=30°. 故答案为60,30. (2)∠BAD=2∠CDE,理由如下: 如图②,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACB=∠CDE+∠AED, ∴∠CDE=∠ACB-∠AED=40°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=n-100°, ∴∠BAD=2∠CDE. (3)成立,∠BAD=2∠CDE,理由如下: 如图③,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°, ∴∠ACD=140°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACD=∠CDE+∠AED, ∴∠CDE=∠ACD-∠AED=140°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=100°+n, ∴∠BAD=2∠CDE. 【点睛】 本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末考试 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文