导数与函数的零点.ppt.ppt
《导数与函数的零点.ppt.ppt》由会员分享,可在线阅读,更多相关《导数与函数的零点.ppt.ppt(30页珍藏版)》请在咨信网上搜索。
导数的应用导数的应用(2)教学目标教学目标:用导数解决零点问题用导数解决零点问题,证明不等式及其应用证明不等式及其应用.教学重点教学重点:重点是用导数解决有关函数零点的问题重点是用导数解决有关函数零点的问题,不等式的证明及应用结论解决有关问题不等式的证明及应用结论解决有关问题.教学难点教学难点:难点是用导数解决函数零点问题时对参数难点是用导数解决函数零点问题时对参数 的讨论的讨论.1.求函数的单调区间:求函数的单调区间:3.求函数的极值的方法及步骤:求函数的极值的方法及步骤:4.求函数的最值的方法及步骤:求函数的最值的方法及步骤:2.已知函数的单调区间或最值求参数的取值范围:已知函数的单调区间或最值求参数的取值范围:导数的应用导数的应用(2)2.设设a1,函数函数 (1)求求f(x)的单调区间的单调区间 (2)证明证明f(x)在在 上仅有一个零点上仅有一个零点.(3)若函数若函数y=f(x)在点在点P处的切线与处的切线与x轴平行轴平行,且在点且在点M(m,n)处的切线处的切线 与直线与直线OP平行平行(O是坐标原点是坐标原点),证明证明:1.已知函数已知函数 有两个极值点有两个极值点,则实数则实数a的取值范围的取值范围()A)B)C)(0,1)D)变式训练变式训练1:设函数设函数 (1)当当k0时时,求函数求函数f(x)的单调区间的单调区间.(2)若函数若函数f(x)在在(0,2)内存在两个极值点内存在两个极值点,求求k的取值范的取值范围围.导数的应用导数的应用(2)3.已知函数已知函数 (1)若若 ,求求f(x)的单调区间的单调区间.(2)若当若当x0时时f(x)0,求实数求实数a的取值范围的取值范围.变式训练变式训练3.设函数设函数 (1)若若a=0,求求f(x)的单调区间的单调区间.(2)若当若当x0时时f(x)0,求求a的取值范围的取值范围.变式训练变式训练2.已知函数已知函数 ,g(x)=-lnx (1)当当a为何值时为何值时,x轴为曲线轴为曲线y=f(x)的切线的切线 (2)用用minm,n表示表示m,n中的最小值中的最小值,设函数设函数 h(x)=minf(x),g(x)(x0),讨论讨论h(x)零点的个数零点的个数.1.解解 由题意知由题意知,有两个实根有两个实根 设设 ,则则 1.已知函数已知函数 有两个极值点有两个极值点,则实数则实数a的取值范围的取值范围()A)B)C)(0,1)D)当当a0时时 ,g(x)在在 单调递增单调递增 g(x)不可能有两个零点不可能有两个零点,则则f(x)不可能有两个极值点不可能有两个极值点.当当a0时时,由由 ,得得 当当 时时,g(x)单调递增单调递增 当当 时时,g(x)单调递减单调递减 所以所以g(x)有最大值有最大值 由题意知由题意知 ,得得 故故a的取值范围为的取值范围为1.已知函数已知函数 有两个极值点有两个极值点,则实数则实数a的取值范围的取值范围()A)B)C)(0,1)D)1.解解 由题意知由题意知,有两个实根有两个实根 即即 有两个实根有两个实根即即y=lnx与与y=2ax-1的图像在的图像在 有两个交点有两个交点如图如图设设y=lnx与与y=2ax-1的图像切于点的图像切于点(m,lnm)则由则由 ,解得解得 m=1所以所以k=2a=1,得,得故故a的取值范围为的取值范围为变式训练变式训练1:设函数设函数 (1)当当k0时时,求函数求函数f(x)的单调区间的单调区间.(2)若函数若函数f(x)在在(0,2)内存在两个极值点内存在两个极值点,求求k的取值范围的取值范围.解解:(1)f(x)的定义域为的定义域为 由由k0,可得可得所以当所以当 0 x2时时,函数函数f(x)单调递减单调递减所以当所以当 0 x0时时,设函数设函数则则当当0k1时时,由由0X2,得得 ,g(x)单调递增单调递增 故故g(x)不可能有两个零点不可能有两个零点,即即f(x)不可能有两个极值点不可能有两个极值点.当当 时时,由由0X2,得得 ,g(x)单调递减单调递减 故故g(x)不可能有两个零点不可能有两个零点,即即f(x)不可能有两个极值点不可能有两个极值点.当当 时时,由由 ,得得x=lnk 当当0 xlnk时时,函数函数g(x)单调递减单调递减 当当lnkx0时时,设函数设函数y=f(x)在在(0,2)上有两个极值点等价于上有两个极值点等价于g(x)在在(0,2)上上有两个零点有两个零点则则 与与y=kx在在(0,2)上有两个交点上有两个交点画简图如下画简图如下:当直线当直线y=kx过点过点 时时,当直线当直线y=kx与与 切于点切于点 时时 ,解得解得m=1所以所以k=e故故k的取值范围为的取值范围为解解:对于对于 所以所以f(x)的单调递增区间为的单调递增区间为 2.设设a1,函数函数 (1)求求f(x)的单调区间的单调区间 (2)证明证明f(x)在在 上仅有一个零点上仅有一个零点.(3)若函数若函数y=f(x)在点在点P处的切线与处的切线与x轴平行轴平行,且在点且在点M(m,n)处的切线处的切线 与直线与直线OP平行平行(O是坐标原点是坐标原点),证明证明:2.证明证明:有有(1)知知f(x)在在R上单调递增上单调递增,且且f(0)=1-a1,故故a-10,所以所以所以所以 ,故故所以所以 ,使得使得又又f(x)在在 上单调递增上单调递增所以所以f(x)在在 上仅有一个零点上仅有一个零点.(3)证明证明:令令 ,得得x=-1 所以点所以点P坐标为坐标为 所以所以OP的斜率为的斜率为 由由f(x)在点在点M(m,n)处的切线与直线处的切线与直线OP平行平行,得得 要证要证只需证只需证即证即证设设则由则由 ,得得m=0当当 时时,g(m)单调递减单调递减当当 时时,g(m)单调递增单调递增所以所以故故 成立成立 所以所以解解:(1)设曲线设曲线y=f(x)与与x轴切于点轴切于点 ,则则 ,即即 解得解得 当当 时时,x轴是轴是y=f(x)的切线的切线.变式训练变式训练2.已知函数已知函数 ,g(x)=-lnx (1)当当a为何值时为何值时,x轴为曲线轴为曲线y=f(x)的切线的切线 (2)用用minm,n表示表示m,n中的最小值中的最小值,设函数设函数 h(x)=minf(x),g(x)(x0),讨论讨论h(x)零点的个数零点的个数.(2)当当x1时时,g(x)=-lnx0,从而从而h(x)=minf(x),g(x)g(x)0 故故h(x)在在 无零点无零点.当当x=1时时,若若 ,则则f(1)=h(1)=minf(1),g(1)=g(1)=0,x=1是是h(x)的一个零点的一个零点 若若 ,则则h(1)=f(1)0,h(x)无零点无零点.当当0 x0无零点无零点,只需考虑只需考虑f(x)在在(0,1)上的零点个数上的零点个数.()当当a0时时,f(x)在在(0,1)单调递增且单调递增且f(0)0 故故f(x)(0,1)上无零点上无零点.()当当a-3时时,f(x)在在(0,1)单调递减单调递减 且且 ,f(x)在在(0,1)内仅有一个零点内仅有一个零点.()当当-3a0,f(x)在在(0,1)内有两个零点内有两个零点当当 时时,f(1)0,f(x)在在(0,1)内有一个零点内有一个零点.3.已知函数已知函数 (1)若若 ,求求f(x)的单调区间的单调区间.(2)若当若当x0时时f(x)0,求实数求实数a的取值范围的取值范围.解解:(1)时时,由由 ,得得x=0或或x=-1 当当 时时,f(x)单调递增单调递增 当当 时时,f(x)单调递减单调递减 故故f(x)的单调递增区间为的单调递增区间为 f(x)的单调递增区间为的单调递增区间为 (2)设设 ,则则 若若a1,当当x0时时,g(x)单调递增单调递增,而而g(0)=0 所以当所以当x0时时,g(x)0,即即f(x)0 若若a1,则当则当 时时,g(x)单调递减单调递减而而g(0)=0,从而当从而当 时时,g(x)0,即即f(x)0时时,恒成立恒成立,设设 则则 设设 ,所以所以h(x)在在 上单调递增上单调递增,h(x)h(0)=0 故故 ,则则g(x)在在 上单调递增。上单调递增。所以所以 由于由于 在在 恒成立。恒成立。所以所以a1 a的取值范围为的取值范围为 (2),则则 令令 ,则则当当 时时,恒成立恒成立,g(x)在在 单调递增单调递增 所以所以g(x)g(0)=0,即即 ,故故f(x)在在 单调递增单调递增 所以所以f(x)f(0)=0,即不等式即不等式f(x)0成立成立.当当 时时,g(x)在在(0,ln2a)单调递减单调递减,而而g(0)=0 g(x)g(0)=0,则则 ,f(x)在在(0,ln2a)单调递减单调递减 而而f(0)=0,故故f(x)0,不合题意不合题意.综上综上,得得a的取值范围为的取值范围为解解:(1)a=0时时,则则 当当x0,f(x)单调递单调递增增 故故f(x)的单调递增区间为的单调递增区间为 ,单调递减区间为单调递减区间为变式训练变式训练3.设函数设函数 (1)若若a=0,求求f(x)的单调区间的单调区间.(2)若当若当x0时时f(x)0,求求a的取值范围的取值范围.解解:(1)a=0时时,则则 当当x0,f(x)单调递单调递增增 故故f(x)的单调递增区间为的单调递增区间为 ,单调递减区间为单调递减区间为(2)由由(1)知知 ,当且仅当当且仅当x=0时等号成立时等号成立 当当1-2a0时时,即即 时时,而而f(0)=0 于是于是x0时时,f(x)0由由 ,得得 ,故故从而当从而当 时时,故当故当0 xln2a时时,f(x)单调递减单调递减,而而f(0)=0,于是于是f(x)0综上得综上得a的取值范围为的取值范围为1.设设 ,x0,n (1)求求 (2)证明证明:在在 内有且仅有一个零点内有且仅有一个零点(记为记为 ),且且 课后作业课后作业2.已知函数已知函数 (1)设设g(x)是是f(x)的导函数的导函数,求函数求函数g(x)在区间在区间 上的最小值上的最小值.(2)若若f(1)=0,函数函数f(x)在区间在区间(0,1)内有零点内有零点,证明证明:e-2a13.设设f(x)=lnx-p(x-1)(1)当当p=1时时,求求f(x)的单调区间。的单调区间。(2)设函数设函数 (x1)求证求证:当当 ,g(x)0成立成立.4.已知函数已知函数 (1)求求f(x)的单调区间的单调区间 (2)若若a0且且x1时时,7.已知函数已知函数 ,曲线曲线y=f(x)在点在点(1,f(1)处的切线处的切线 方程为方程为x+2y-3=0 (1)求求a.b的值的值 (2)如果当如果当x0且且x1时时,求求k的取值范围的取值范围.1.设设 ,x0,n (1)求求 (2)证明证明:在在 内有且仅有一个零点内有且仅有一个零点(记为记为 ),且且 解解:(1)所以所以 则则 -得得,所以所以(2)因为因为 ,所以所以 在在 内至少有一个零点内至少有一个零点.又又 ,所以所以 在在 内单调递增内单调递增所以所以 在在 内有且仅有一个零点内有且仅有一个零点 .由于由于 ,所以所以由此可得由此可得 故故所以所以即即 在在 内有且仅有一个零点内有且仅有一个零点 ,且且2.已知函数已知函数 (1)设设g(x)是是f(x)的导函数的导函数,求函数求函数g(x)在区间在区间 上的最小值上的最小值.(2)若若f(1)=0,函数函数f(x)在区间在区间(0,1)内有零点内有零点,证明证明:e-2a0,g(1)0 即即1-b0,e-2a-b0 又又f(1)=e-a-b-1=0,得得b=e-a-1 所以所以1-(e-a-1)0,e-2a-(e-a-1)0 解得解得e-2a1 故故f(1)=0,若若f(x)在在(0,1)内有零点内有零点,则则e-2a1由由(1)知当知当 ,g(x)在在 单调递增单调递增,故故g(x)至多有一个零点至多有一个零点当当 ,g(x)在在 单调递减单调递减,故故g(x)至多有一个零点至多有一个零点- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 函数 零点 ppt
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文