2024年人教版中学七7年级下册数学期末测试试卷(附答案).doc
《2024年人教版中学七7年级下册数学期末测试试卷(附答案).doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末测试试卷(附答案).doc(27页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末测试试卷(附答案) 一、选择题 1.下列说法正确的是() A.4的平方根是 B.16的平方根是 C.2是的算术平方根 D.是36的算术平方根 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( ) A. B. C. D. 3.已知点在轴的负半轴上,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ) A.对顶角相等 B.在同一平面内,垂直于同一条直线的两条直线平行 C.同旁内角互补 D.平行于同一条直线的两条直线平行 5.若的两边与的两边分别平行,且,那么的度数为( ) A. B. C.或 D.或 6.下列说法中正确的是( ) ①1的平方根是1; ②5是25的算术平方根; ③(﹣4)2的平方根是﹣4; ④(﹣4)3的立方根是﹣4; ⑤0.01是0.1的一个平方根. A.①④ B.②④ C.②③ D.②⑤ 7.已知:如图,AB∥EF,CD⊥EF,∠BAC=30°,则∠ACD=( ) A.100° B.110° C.120° D.130° 8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为( ) A. B. C. D. 九、填空题 9.的算术平方根是________. 十、填空题 10.平面直角坐标系中,点关于轴的对称点是__________. 十一、填空题 11.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________. 十二、填空题 12.如图,,平分,交于,若,则的度数是______°. 十三、填空题 13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______. 十四、填空题 14.定义一种新运算“”规则如下:对于两个有理数,,,若,则______ 十五、填空题 15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________. 十六、填空题 16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是______. 十七、解答题 17.计算: (1). (2)﹣12+(﹣2)3× . 十八、解答题 18.求下列各式中的值: (1); (2). 十九、解答题 19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据) 解:∵∠1=∠2(已知) ∴CF//BD( ) ∴∠3+∠CAB=180°( ) ∵∠3=∠C(已知) ∴∠C+∠CAB=180°(等式的性质) ∴AB//CD( ) ∴∠4=∠EGA(两直线平行,同位角相等) ∵∠4=∠5(已知) ∴∠5=∠EGA(等量代换) ∴ED//FB( ) 二十、解答题 20.已知,,. (1)在如图所示的直角坐标系中描上各点,画出三角形; (2)将向下平移2个单位长度,再向左平移2个单位长度得到三角形,画出平移后的图形并写出、、的坐标. 二十一、解答题 21.已知是的整数部分,是的小数部分,求的平方根. 二十二、解答题 22.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 二十三、解答题 23.如图①,将一张长方形纸片沿对折,使落在的位置; (1)若的度数为,试求的度数(用含的代数式表示); (2)如图②,再将纸片沿对折,使得落在的位置. ①若,的度数为,试求的度数(用含的代数式表示); ②若,的度数比的度数大,试计算的度数. 二十四、解答题 24.[感知]如图①,,求的度数. 小乐想到了以下方法,请帮忙完成推理过程. 解:(1)如图①,过点P作. ∴(_____________), ∴, ∴________(平行于同一条直线的两直线平行), ∴_____________(两直线平行,同旁内角互补), ∴, ∴, ∴,即. [探究]如图②,,求的度数; [应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º. (2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示). 二十五、解答题 25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据平方根和算术平方根的定义判断即可. 【详解】 解:A.4的平方根是±2,故错误,不符合题意; B.的平方根是±4,故正确,符合题意; C.-4没有算术平方根,故错误,不符合题意; D.-6是36的一个平方根,故错误,不符合题意; 故选B. 【点睛】 本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断. 2.C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是 解析:C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是轴对称图形,故选项B不合题意; C.选项的图案可以通过平移得到.故选项C符合题意; D.是轴对称图形,故选项D不符合题意. 故选:C. 【点睛】 本题考查了图形的平移,掌握平移的定义及性质是解题的关键. 3.A 【分析】 根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答. 【详解】 ∵点P(0,a)在y轴的负半轴上, ∴, ∴, , ∴点M(-a,-a+5)在第一象限. 故选:A. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键. 4.C 【分析】 利用对顶角相等、平行线的判定与性质进行判断选择即可. 【详解】 解:A、对顶角相等,是真命题,不符合题意; B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意; C、同旁内角互补,是假命题,符合题意; D、平行于同一条直线的两条直线平行,真命题,不符合题意, 故选:C. 【点睛】 本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大. 5.A 【分析】 根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案. 【详解】 解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A, 又∵∠B=∠A+20°, ∴∠A+20°=∠A, ∵此方程无解, ∴此种情况不符合题意,舍去; 当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°; 又∵∠B=∠A+20°, ∴∠A+20°+∠A=180°, 解得:∠A=80°; 综上所述,的度数为80°, 故选:A. 【点睛】 本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案. 6.B 【分析】 根据平方根,算术平方根,立方根的概念进行分析,从而作出判断. 【详解】 解:1的平方根是±1,故说法①错误; 5是25的算术平方根,故说法②正确; (-4)2的平方根是±4,故说法③错误; (-4)3的立方根是-4,故说法④正确; 0.1是0.01的一个平方根,故说法⑤错误; 综上,②④正确, 故选:B. 【点睛】 本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.C 【分析】 如图,过点C作,利用平行线的性质得到,,则易求∠ACD的度数. 【详解】 解:过点C作,则, , , , , , 故选:C. 【点睛】 本题考查了平行线的性质.该题通过作辅助线,将转化为(+90°)来求. 8.A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可. 【详解】 解:如图, 解析:A 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可. 【详解】 解:如图,观察发现,第2次跳动至点的坐标是, 第4次跳动至点的坐标是, 第6次跳动至点的坐标是, 第8次跳动至点的坐标是, 第次跳动至点的坐标是, 则第2020次跳动至点的坐标是, 故选:A. 【点睛】 本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 九、填空题 9.2 【分析】 先求出=4,再求出算术平方根即可. 【详解】 解:∵=4, ∴的算术平方根是2, 故答案为:2. 【点睛】 本题考查了立方根和算术平方根的应用,主要考查学生的计算能力. 解析:2 【分析】 先求出=4,再求出算术平方根即可. 【详解】 解:∵=4, ∴的算术平方根是2, 故答案为:2. 【点睛】 本题考查了立方根和算术平方根的应用,主要考查学生的计算能力. 十、填空题 10.【分析】 根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】 解:点关于轴的对称点的坐标是(3,2). 【点睛】 本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特 解析: 【分析】 根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】 解:点关于轴的对称点的坐标是(3,2). 【点睛】 本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数; 十一、填空题 11.120° 【分析】 由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解. 【详解】 解:和的角平分线相交于, ,, 又, ,, 设,, , 在四边形中,,,, 解析:120° 【分析】 由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解. 【详解】 解:和的角平分线相交于, ,, 又, ,, 设,, , 在四边形中,,,, , , , , 故答案为:. 【点睛】 本题考查了平行线的判定和性质,正确的识别图形是解题的关键. 十二、填空题 12.25 【分析】 根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ECD, ∵CE平分∠ACD,∠ACD=50°, ∴=25°, ∴∠1=25°, 故答案为 解析:25 【分析】 根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ECD, ∵CE平分∠ACD,∠ACD=50°, ∴=25°, ∴∠1=25°, 故答案为:25. 【点睛】 本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 十三、填空题 13.【分析】 根据翻折得到,根据,即可求出AC,再根据E是中点即可求解. 【详解】 沿翻折使与重合 故答案为:. 【点睛】 此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性 解析: 【分析】 根据翻折得到,根据,即可求出AC,再根据E是中点即可求解. 【详解】 沿翻折使与重合 故答案为:. 【点睛】 此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质. 十四、填空题 14.【分析】 根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答. 【详解】 解:由题意得:(5x-x)⊙(−2)=−1, ∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得 解析: 【分析】 根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答. 【详解】 解:由题意得:(5x-x)⊙(−2)=−1, ∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:, 故答案为. 【点睛】 本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 . 十五、填空题 15.(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐 解析:(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】 本题考查点的坐标,利用数形结合思想解题是关键. 十六、填空题 16.【分析】 通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1 解析: 【分析】 通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,,2,,3,…,,点P的纵坐标规律:,0,,0,0,0,…,确定P2021循环余下的点即可. 【详解】 解:∵图中是边长为1个单位长度的等边三角形, ∴ A2(1,0) A4(2,0) A6(3,0) … ∴An中每6个点的纵坐标规律:,0,,0,﹣,0, 点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段, P运动每6秒循环一次 点P的纵坐标规律:,0,,0,-,0,…, 点P的横坐标规律: ,1,,2,,3,…,, ∵2021=336×6+5, ∴点P2021的纵坐标为, ∴点P2021的横坐标为, ∴点P2021的坐标, 故答案为:. 【点睛】 本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键. 十七、解答题 17.(1)0;(2)-3. 【分析】 (1)原式利用平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果. 【详解】 解:(1)原式=3-6- 解析:(1)0;(2)-3. 【分析】 (1)原式利用平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果. 【详解】 解:(1)原式=3-6-(-3)=3-6+3=0; (2)原式= -1+(-8)× -(-3)×(- )=-1-1-1=-3. 故答案为(1)0;(2)-3. 【点睛】 本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 十八、解答题 18.(1);(2) 【分析】 (1)先移项,然后运用直接开平方法,即可求出的值; (2)方程两边同时除以8,然后计算立方根,即可得到答案. 【详解】 解:(1) ∴, ∴, ∴; (2), ∴, ∴, 解析:(1);(2) 【分析】 (1)先移项,然后运用直接开平方法,即可求出的值; (2)方程两边同时除以8,然后计算立方根,即可得到答案. 【详解】 解:(1) ∴, ∴, ∴; (2), ∴, ∴, ∴; 【点睛】 本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题. 十九、解答题 19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平 解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平行), (两直线平行,同旁内角互补), (已知), (等式的性质), (同旁内角互补,两直线平行), (两直线平行,同位角相等), (已知), (等量代换), (同位角相等,两直线平行). 故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题 20.(1)见解析;(2)见解析,,, 【分析】 (1)依据A(0,1),B(2,0),C(4,3),即可画出△ABC; (2)依据△ABC向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进 解析:(1)见解析;(2)见解析,,, 【分析】 (1)依据A(0,1),B(2,0),C(4,3),即可画出△ABC; (2)依据△ABC向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进而得到点A1,B1,C1的坐标. 【详解】 解:(1)如图,三角形即为所画, (2)如图, 即为所画, 、、的坐标 :,, 【点睛】 本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.【分析】 先进行估算的范围,确定a,b的值,再代入代数式即可解答. 【详解】 解:∵, ∴的整数部分为2,小数部分为, 且. ∴的整数部分为4. ∴, ∴. 【点睛】 本题考查了估算无理数的大小, 解析: 【分析】 先进行估算的范围,确定a,b的值,再代入代数式即可解答. 【详解】 解:∵, ∴的整数部分为2,小数部分为, 且. ∴的整数部分为4. ∴, ∴. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是估算的范围. 二十二、解答题 22.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 二十三、解答题 23.(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义 解析:(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可; ②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解. 【详解】 解:(1)如图,由题意可知, ∴, ∵, ∴, , 由折叠可知. (2)①由题(1)可知 , ∵, , 再由折叠可知: , ; ②由可知:, 由(1)知, , 又的度数比的度数大, , , , . 【点睛】 此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键. 二十四、解答题 24.[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; 解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; [探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数; [应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数; (2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解. 【详解】 解:[感知]如图①,过点P作PM∥AB, ∴∠1=∠AEP=40°(两直线平行,内错角相等) ∵AB∥CD, ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠2+∠PFD=180°(两直线平行,同旁内角互补), ∴∠PFD=130°(已知), ∴∠2=180°-130°=50°, ∴∠1+∠2=40°+50°=90°,即∠EPF=90°; [探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°, ∵AB∥CD, ∴PM∥CD, ∴∠PFC=∠MPF=120°, ∴∠EPF=∠MPF-∠MPE=120°-50°=70°; [应用](1)如图③所示, ∵EG是∠PEA的平分线,FG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-∠MGE=60°-25°=35°. 故答案为:35. (2)当点A在点B左侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵平分平分,, ∴∠ABE=∠BEF=,∠CDE=∠DEF=, ∴∠BED=∠BEF+∠DEF=; 当点A在点B右侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠DEF=∠CDE,∠ABG=∠BEF, ∵平分平分,, ∴∠DEF=∠CDE=,∠ABG=∠BEF=, ∴∠BED=∠DEF-∠BEF=; 综上:∠BED的度数为或. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质. 二十五、解答题 25.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 测试 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文