2022年人教版七7年级下册数学期末质量监测题(附答案).doc
《2022年人教版七7年级下册数学期末质量监测题(附答案).doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末质量监测题(附答案).doc(25页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末质量监测题(附答案) 一、选择题 1.的算术平方根是() A. B. C. D. 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.在平面直角坐标系中,在第三象限的点是( ) A.(-3,5) B.(1,-2) C.(-2,-3) D.(1,1) 4.下列命题中,假命题的数量为( ) ①如果两个角的和等于平角,那么这两个角互为补角; ②内错角相等; ③两个锐角的和是锐角; ④如果直线a∥b,b∥c,那么a∥c. A.3 B.2 C.1 D.0 5.如图,一副直角三角板图示放置,点在的延长线上,点在边上,,,则( ) A. B. C. D. 6.下列算式,正确的是( ) A. B. C. D. 7.在同一平面内,若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠A的度数为( ) A.20° B.55° C.20°或125° D.20°或55° 8.已知点,,点,,点,是线段的中点,则,.在平面直角坐标系中有三个点A(1,),B(,),C(0,1),点P(0,2)关于点A的对称点(即,,三点共线,且,关于点的对称点,关于点的对称点,按此规律继续以,,三点为对称点重复前面的操作.依次得到点,,,则点的坐标是( ) A.(0,0) B.(0,2) C.(2,) D.(,2) 九、填空题 9.若则 ________. 十、填空题 10.若点与关于轴对称,则____________________________. 十一、填空题 11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________. 十二、填空题 12.已知,,,,且,请直接写出、、的数量关系________. 十三、填空题 13.如图所示是一张长方形形状的纸条,,则的度数为__________. 十四、填空题 14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____. 十五、填空题 15.,则在第_____象限. 十六、填空题 16.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_________. 十七、解答题 17.(1)已知,求x的值; (2)计算:. 十八、解答题 18.求下列各式中的x值: (1)169x2=144; (2)(x-2)2-36=0. 十九、解答题 19.如图,四边形 ABCD 中,ÐA = ÐC = 90° ,BE ,DF 分别是ÐABC ,ÐADC 的平分线. 试说明 BE // DF .请补充说明过程,并在括号内填上相应理由. 解:在四边形 ABCD 中, ÐA + ÐABC + ÐC + ÐADC = 360° ∵ÐA = ÐC = 90°(已知) ∴ÐABC +ÐADC= ° , ∵BE , DF 分别是ÐABC , ÐADC 的平分线, ∴Ð1 =ÐABC , Ð2= ÐADC ( ) ∴Ð1+Ð2= (ÐABC + ÐADC) ∴Ð1+Ð2= ° ∵在△FCD 中, ÐC = 90° , ∴ÐDFC + Ð2 = 90° ( ) ∵Ð1+Ð2=90° (已证) ∴Ð1=ÐDFC ( ) ∴BE ∥ DF . ( ) 二十、解答题 20.在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”.例如:点的“3系置换点”的坐标为,即. (1)点(2,0)的“2系置换点”的坐标为________; (2)若点的“3系置换点”的坐标是(-4,11),求点的坐标. (3)若点(其中),点的“系置换点”为点,且,求的值; 二十一、解答题 21.阅读下面的文字,解答问题, 例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2). 请解答:(1)的整数部分是 ,小数部分是 . (2)已知:5﹣小数部分是m,6+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值. 二十二、解答题 22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等. (1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,) 二十三、解答题 23.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 二十四、解答题 24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 二十五、解答题 25.互动学习课堂上某小组同学对一个课题展开了探究. 小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系. 小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决. (1)请你在横线上补全小明的探究过程: ∵,(______) ∴,(等式性质) ∵, ∴, ∴.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题: ①如图①,在凹四边形中,,,求______; ②如图②,在凹四边形中,与的角平分线交于点,,,则______; ③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______; ④如图④,,的角平分线交于点,则,与之间的数量关系是______; ⑤如图⑤,,的角平分线交于点,,,求的度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据算术平方根的意义求解即可. 【详解】 解:16的算术平方根为4, 故选:A. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是解决问题的关键. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.C 【分析】 根据第三象限点的特征,依次判断即可. 【详解】 解:A:,,因此在第二象限,故错误; B:,,,因此在第四象限,故错误; C:,,,因此在第三象限,故正确; D:,,,因此在第一象限,故错误; 故答案为:C 【点睛】 本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键. 4.B 【分析】 根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④. 【详解】 根据平角和补角的性质可以判断①是真命题; 两直线平行内错角相等,故②是假命题; 两锐角的和可能是钝角也可能是直角,故③是假命题; 平行于同一条直线的两条直线平行,故④是真命题, 因此假命题有两个②和③, 故选:B. 【点睛】 本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键. 5.B 【分析】 根据平行线的性质可知, ,由 即可得出答案。 【详解】 解:∵ ∴, ∵ ∴ ∴ 故答案是B 【点睛】 本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补. 6.A 【分析】 根据平方根、立方根及算术平方根的概念逐一计算即可得答案. 【详解】 A.,计算正确,故该选项符合题意, B.,故该选项计算错误,不符合题意, C.,故该选项计算错误,不符合题意, D.,故该选项计算错误,不符合题意, 故选:A. 【点睛】 本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键. 7.C 【分析】 根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数. 【详解】 解:∵两个角的两边分别平行, ∴这两个角大小相等或互补, ①这两个角大小相等,如下图所示: 由题意得,∠A=∠B,∠A=3∠B-40°, ∴∠A=∠B=20°, ②这两个角互补,如下图所示: 由题意得,,, ∴,, 综上所述,∠A的度数为20°或125°, 故选:C. 【点睛】 本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 8.A 【分析】 首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵, 解析:A 【分析】 首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵,,且是的中点, ∴解得:, ∴ 同理可得: ∴每6个点一个循环, ∵ ∴点的坐标是 故选A 【点睛】 此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出. 九、填空题 9.【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 解析: 【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 十、填空题 10.0 【分析】 根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴, 故答案为:0. 【点睛】 本题主要考查了平面直角坐标系内点 解析:0 【分析】 根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴, 故答案为:0. 【点睛】 本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键. 十一、填空题 11.120° 【分析】 由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB= 解析:120° 【分析】 由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°. 【详解】 ∵∠A=60°, ∴∠ABC+∠ACB=120°, ∵BO平分∠ABC,CO平分∠ACB, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=∠ABC+∠ACB=60°, ∴∠BOC=180°-∠OBC-∠OCB=120° 故答案为120° 【点睛】 本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理 十二、填空题 12.(上式变式都正确) 【分析】 过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案. 【详解】 解:如图 解析:(上式变式都正确) 【分析】 过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案. 【详解】 解:如图所示,过点E作,过点F作, ∵, ∴, ∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∵,,,且, ∴, 故答案为:. 【点睛】 题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键. 十三、填空题 13.5° 【分析】 根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可. 【详解】 解:∵AB∥CD, ∴∠1+∠3=180°, ∵∠1=105°, ∴∠3= 解析:5° 【分析】 根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可. 【详解】 解:∵AB∥CD, ∴∠1+∠3=180°, ∵∠1=105°, ∴∠3=180°-105°=75°, ∴∠2=(180°-75°)÷2=52.5°, 故答案为:52.5°. 【点睛】 此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的. 十四、填空题 14.20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的 解析:20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的规律为:分子为,分母为 归纳类推得:第n个等式为(n为正整数) 当时,这个等式为,即 故答案为:. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 十五、填空题 15.二 【分析】 根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答. 【详解】 解:由题意得,a+2=0,b-6=0, 解得a=-2,b=6, 所以,点(-2,6)在第二象限; 故答 解析:二 【分析】 根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答. 【详解】 解:由题意得,a+2=0,b-6=0, 解得a=-2,b=6, 所以,点(-2,6)在第二象限; 故答案为:二 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(0,2). 【分析】 利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:由已知,正方形周长为16, ∵M、N速度分别为1单 解析:(0,2). 【分析】 利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:由已知,正方形周长为16, ∵M、N速度分别为1单位/秒,3单位/秒, 则两个物体每次相遇时间间隔为=4秒, 则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0) ∵2021=4×505…1, ∴第2021次两个物体相遇位置为(0,2), 故答案为:(0,2). 【点睛】 本题考查了平面直角坐标系中点的规律,找到规律是解题的关键. 十七、解答题 17.(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【 解析:(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【点睛】 本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 十八、解答题 18.(1)x=±;(2)x=8或x=-4. 【分析】 (1)移项后,根据平方根定义求解; (2)移项后,根据平方根定义求解. 【详解】 解:(1)169x2=144, 移项得:x2=, 解得:x=±. 解析:(1)x=±;(2)x=8或x=-4. 【分析】 (1)移项后,根据平方根定义求解; (2)移项后,根据平方根定义求解. 【详解】 解:(1)169x2=144, 移项得:x2=, 解得:x=±. (2)(x-2)2-36=0, 移项得:(x-2)2=36, 开方得:x-2=6或x-2=-6 解得:x=8或x=-4. 故答案为(1)x=±;(2)x=8或x=-4. 【点睛】 本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念. 十九、解答题 19.见解析 【分析】 根据四边形的内角和,可得∠ABC+∠ADC=180°,然后根据角平分线的定义可得,∠1+∠2=90°,再根据三角形内角和得到,∠DFC+∠2=90°,等量代换∠1=∠DFC,即可判 解析:见解析 【分析】 根据四边形的内角和,可得∠ABC+∠ADC=180°,然后根据角平分线的定义可得,∠1+∠2=90°,再根据三角形内角和得到,∠DFC+∠2=90°,等量代换∠1=∠DFC,即可判定BE∥DF. 【详解】 在四边形ABCD中,∠A+∠ABC+∠C+∠ADC=360°. ∵∠A=∠C=90°, ∴∠ABC+∠ADC=180°(四边形的内角和是360°), ∵BE,DF分别是∠ABC,∠ADC的平分线, ∴Ð1 =ÐABC , Ð2= ÐADC(角平分线定义) ∴Ð1+Ð2= (ÐABC + ÐADC) ∴∠1+∠2=90°, 在△FCD中,∠C=90°, ∴∠DFC+∠2=90°(三角形的内角和是180°), ∵∠1+∠2=90°(已证), ∴∠1=∠DFC(等量代换), ∴BE∥DF.(同位角相等,两直线平行 ). 【点睛】 本题主要考查了平行线的判定与性质,关键是掌握三角形、四边形的内角和,以及同位角相等,两直线平行. 二十、解答题 20.(1);(2);(3). 【分析】 (1)根据题中新定义直接将m的值代入即可得出答案; (2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案; (3)根据题中新定义可得出点B的坐标,再根据 解析:(1);(2);(3). 【分析】 (1)根据题中新定义直接将m的值代入即可得出答案; (2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案; (3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案. 【详解】 解:(1)点(2,0)的“2系置换点”的坐标为,即; (2)由题意得: 解得: 点A的坐标为:; (3) 点为 即点B坐标为 , 为常数,且 . 【点睛】 本题考查了二元一次方程组的解法、绝对值方程,理解“系置换点”的定义并能运用是本题的关键. 二十一、解答题 21.(1)4 ,;(2)x=0或-2. 【分析】 (1)根据夹逼法可求的整数部分和小数部分; (2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值. 【详解】 (1)∵4<<5, ∴的整 解析:(1)4 ,;(2)x=0或-2. 【分析】 (1)根据夹逼法可求的整数部分和小数部分; (2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值. 【详解】 (1)∵4<<5, ∴的整数部分是4,小数部分是−4. 故答案为:4;; (2)∵5﹣小数部分是m,0<5﹣<1,6+小数部分是n ∴m=5-, n=6+-10=-4 ∴m+n=1 ∴(x+1)2=1 x+1=±1 解得:x=0或-2. 【点睛】 此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键. 二十二、解答题 22.(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个 解析:(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答. 【详解】 解:(1)设正方形边长为,则,由算术平方根的意义可知, 所以正方形的边长是. (2)不同意. 因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为, 所以,即两个正方形边长的和大于长方形的长, 所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片. 【点睛】 本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 二十三、解答题 23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 二十四、解答题 24.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 二十五、解答题 25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤ 【分析】 (1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外 解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤ 【分析】 (1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系; (3)①连接BC,然后根据(1)中结论,代入已知条件即可求解; ②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解; ③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解; ④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解. 【详解】 (1)∵,(三角形内角和180°) ∴,(等式性质) ∵, ∴, ∴.(等量代换) 故答案为:三角形内角和180°;等量代换. (2)如图,延长交于, 由三角形外角性质可知, ,, ∴. (3)①如图①所示,连接BC, , 根据(1)中结论,得, ∴, ∴; ②如图②所示,连接BC, , 根据(1)中结论,得, ∴, ∵与的角平分线交于点, ∴,, ∴, ∵,, ∴, ∴, ∵, ∴; ③如图③所示,连接BC, , 根据(1)中结论,得, ∵,, ∴, ∵与的十等分线交于点, ∴,, ∴, ∴, ∵, ∴, ∴, ∴, ∴; ④如图④所示,设与的交点为点, ∵平分,平分, ∴,, ∵,, ∴, ∴, ∴, 即; ⑤∵,的角平分线交于点, ∴, ∴. 【点睛】 本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末 质量 监测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文