高中数学必修五全套学案.doc
《高中数学必修五全套学案.doc》由会员分享,可在线阅读,更多相关《高中数学必修五全套学案.doc(182页珍藏版)》请在咨信网上搜索。
1、1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题 学习过程 一、课前准备试验:固定ABC的边CB及B,使边AC绕着顶点C转动思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而 能否用一个等式把这种关系精确地表示出来? 二、新课导学 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,又, 从而在直角三角形ABC中, (探
2、究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, 同理可得, 从而 类似可推出,当ABC是钝角三角形时,以上关系式仍然成立请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即试试:(1)在中,一定成立的等式是( )A B.C. D.(2)已知ABC中,a4,b8,A30,则B等于 理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使, ,;(2)等价于 ,(3)正弦定理的基本作用为:已知三角形的任意两
3、角及其一边可以求其他边,如; 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如; (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形 典型例题例1. 在中,已知,cm,解三角形变式:在中,已知,cm,解三角形例2. 在变式:在三、总结提升 学习小结1. 正弦定理:2. 正弦定理的证明方法:三角函数的定义,还有 等积法,外接圆法,向量法.3应用正弦定理解三角形: 已知两角和一边;已知两边和其中一边的对角 知识拓展,其中为外接圆直径. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:
4、10分)计分:1. 在中,若,则是( ).A等腰三角形 B等腰三角形或直角三角形C直角三角形 D等边三角形2. 已知ABC中,ABC114,则abc等于( ).A114 B112 C11 D223. 在ABC中,若,则与的大小关系为( ).A. B. C. D. 、的大小关系不能确定4. 已知ABC中,则= 5. 已知ABC中,A,则= 课后作业 1. 已知ABC中,AB6,A30,B,解此三角形2. 已知ABC中,sinAsinBsinCk(k1)2k (k0),求实数k的取值范围为1.1.2 余弦定理 学习目标 1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦
5、定理解决两类基本的解三角形问题 学习过程 一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = 复习2:在ABC中,已知,A=45,C=30,解此三角形思考:已知两边及夹角,如何解此三角形呢?二、新课导学 探究新知问题:在中,、的长分别为、. ,同理可得: , 新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:, , 理解定理(1)若C=,则 ,这时由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例(
6、2)余弦定理及其推论的基本作用为:已知三角形的任意两边及它们的夹角就可以求出第三边;已知三角形的三条边就可以求出其它角试试:(1)ABC中,求(2)ABC中,求 典型例题例1. 在ABC中,已知,求和变式:在ABC中,若AB,AC5,且cosC,则BC_例2. 在ABC中,已知三边长,求三角形的最大内角变式:在ABC中,若,求角A三、总结提升 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: 已知三边,求三角; 已知两边及它们的夹角,求第三边 知识拓展在ABC中,若,则角是直角;若,则角是钝角;若,则角是锐角 学习评价 自我评价
7、你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a,c2,B150,则边b的长为( ). A. B. C. D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ).A B C D3. 已知锐角三角形的边长分别为2、3、x,则x的取值范围是( ).A Bx5C 2x Dx54. 在ABC中,|3,|2,与的夹角为60,则|_5. 在ABC中,已知三边a、b、c满足,则C等于 课后作业 1. 在ABC中,已知a7,b8,cosC,求最大角的余弦值2. 在ABC中,AB5,BC7,AC8,求的值.1.1
8、 正弦定理和余弦定理(练习) 学习目标 1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形 学习过程 一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理复习2:在ABC中,已知 A,a25,b50,解此三角形二、新课导学 学习探究探究:在ABC中,已知下列条件,解三角形. A,a25,b50; A,a,b50; A,a50,b50.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时)试试:1. 用图示分析(A为直角时)解的情况?2用图示分析(
9、A为钝角时)解的情况? 典型例题例1. 在ABC中,已知,试判断此三角形的解的情况变式:在ABC中,若,则符合题意的b的值有_个例2. 在ABC中,求的值变式:在ABC中,若,且,求角C三、总结提升 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况) 知识拓展在ABC中,已知,讨论三角形解的情况 :当A为钝角或直角时,必须才能有且只有一解;否则无解;当A为锐角时,如果,那么只有一解;如果,那
10、么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a、b为ABC的边,A、B分别是a、b的对角,且,则的值=( ).A. B. C. D. 2. 已知在ABC中,sinAsinBsinC357,那么这个三角形的最大角是( ). A135 B90 C120 D1503. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A锐角三角形 B直角三角形C钝角三角形 D由增加长度决定4. 在ABC中,s
11、inA:sinB:sinC4:5:6,则cosB 5. 已知ABC中,试判断ABC的形状 课后作业 1. 在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围2. 在ABC中,其三边分别为a、b、c,且满足,求角C1.2应用举例测量距离 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题 学习过程 一、课前准备复习1:在ABC中,C60,ab,c2,则A为 . 复习2:在ABC中,sinA,判断三角形的形状.二、新课导学 典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BA
12、C=,ACB=. 求A、B两点的距离(精确到0.1m). 提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边. 新知1:基线在测量上,根据测量需要适当确定的 叫基线. 例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法. 分析:这是例1的变式题,研究的是两个 的点之间的距离测量问题. 首先需要构造三角形,所以需要确
13、定C、D两点. 根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离. 变式:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?三、总结提升 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求
14、解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差PA C 当堂检测(时量:5分钟 满分:10分)计分:1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角的等腰直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=5cm,则球的半径等于( ). A5cmBCD6cm2. 台风中心从A地以每
15、小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( ).A0.5小时 B1小时C1.5小时 D2小时3. 在中,已知,则的形状( ).A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形4.在中,已知,则的值是 5. 一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km 课后作业 1. 隔河可以看到两个目标,但不能到达,在岸边选取相距km的C、D两点,并测得ACB75,BCD45,ADC30,ADB45,A、
16、B、C、D在同一个平面,求两目标A、B间的距离.2. 某船在海面A处测得灯塔C与A相距海里,且在北偏东方向;测得灯塔B与A相距海里,且在北偏西方向. 船由向正北方向航行到D处,测得灯塔B在南偏西方向. 这时灯塔C与D相距多少海里?1.2应用举例测量高度 学习目标 1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称. 学习过程 一、课前准备复习1:在ABC中,则ABC的形状是怎样?复习2:在ABC中,、b、c分别为A、B、C的对边,若=1:1:,求A:B:C的值.二、新课导学 学习探究新知:坡度、仰角、俯角、方位角方位角-从指北方向顺
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 全套
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。