初二上册压轴题强化数学检测试卷附解析(一).doc
《初二上册压轴题强化数学检测试卷附解析(一).doc》由会员分享,可在线阅读,更多相关《初二上册压轴题强化数学检测试卷附解析(一).doc(20页珍藏版)》请在咨信网上搜索。
初二上册压轴题强化数学检测试卷附解析(一) 1.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系. (1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________; (2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由; 2.已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°. (1)已知a,b满足等式|a +b|+b2+4b=-4. ①求A点和B点的坐标; ②如图1,连BD交y轴于点H,求点H的坐标; (2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论. 3.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP. (1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系; (2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想; (3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由. 4.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可) (2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由. (3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形. 5.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 6.如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点. (1)求证:; (2)设,请用含的式子表示,并求的最大值; (3)当时,的取值范围为,求出,的值. 7.如图1,在平面直角坐标系中,,,且∠ACB=90°,AC=BC. (1)求点B的坐标; (2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由; (3)如图3,若在点B处有一个等腰Rt△BDG,且BD=DG,∠BDG=90°,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论. 8.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且. (1)直接写出的度数. (2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标. (3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值. 【参考答案】 2.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D 解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论; (2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. (1) 解:∠BAE+∠FAD=∠EAF. 理由:如图1,延长FD到点G,使DG=BE,连接AG, ∵, ∴, ∵DG=BE,, ∴△ABE≌△ADG, ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD,DG=BE, ∴,且AE=AG,AF=AF, ∴△AEF≌△AGF, ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. 故答案为:∠BAE+∠FAD=∠EAF; (2) 如图2,延长FD到点G,使DG=BE,连接AG, ∵∠B+∠ADF=180°,∠ADG+∠ADF=180°, ∴∠B=∠ADG, 又∵AB=AD, ∴△ABE≌△ADG(SAS), ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD=DG+FD=GF,AF=AF, ∴△AEF≌△AGF(SSS), ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF 【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等. 3.(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y 解析:(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案; (2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立. 【详解】解:(1)∵, ∴, ∴, ∴,, ∴, ∴, ∴A(0,2),B(2,0); ②过C作x轴垂线交BA的延长线于E, ∵OA=OB=2,∠AOB=90°, ∴△AOB是等腰直角三角形, ∴∠ABO=45°, ∵EC⊥BC, ∴△BCE是等腰直角三角形, ∴BC=EC,∠BCE=90°=∠ACD, ∴∠ACE=∠DCB, ∵AC=DC, ∴△CEA≌△CBD, ∴∠CBD=∠E=45°, ∴OH=OB=2, ∴H(0,2); (2)补全图形,如图: ∵点B、E关于y轴对称, ∴OB=OE, ∵a+b=0,即 ∴OA=OB=OE 延长OF至G使FG=OF,连DG,CG, ∵OF=FG,∠OFE=∠DFG,EF=DF ∴△DFG≌△EFO ∴DG=OE=OA,∠DGF=∠EOF ∴DG∥OE ∴∠CDG=∠DCO; ∵∠ACO+∠CAO=∠ACO+∠DCO=90°, ∴∠DCO=∠CAO; ∴∠CDG=∠DCO=∠CAO; ∵CD=AC,OA=DG ∴△DCG≌△ACO ∴OC=GC,∠DCG=∠ACO ∴∠OCG=90°, ∴∠COF=45°, ∴△OCG是等腰直角三角形, 由三线合一定理得CF⊥OF ∵∠OCF=∠COF=45°, ∴CF=OF; 【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题. 4.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2 解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可; (3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样. 【详解】(1)AB=AP且AB⊥AP, 证明:∵AC⊥BC且AC=BC, ∴△ABC为等腰直角三角形, ∴∠BAC=∠ABC=, 又∵△ABC与△EFP全等, 同理可证∠PEF=45°, ∴∠BAP=45°+45°=90°, ∴AB=AP且AB⊥AP; (2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ, 证明:延长BQ交AP于G, 由(1)知,∠EPF=45°,∠ACP=90°, ∴∠PQC=45°=∠QPC, ∴CQ=CP, ∵∠ACB=∠ACP=90°,AC=BC, ∴在△BCQ和△ACP中 ∴△BCQ≌△ACP(SAS), ∴AP=BQ,∠CBQ=∠PAC, ∵∠ACB=90°, ∴∠CBQ+∠BQC=90°, ∵∠CQB=∠AQG, ∴∠AQG+∠PAC=90°, ∴∠AGQ=180°-90°=90°, ∴AP⊥BQ; (3)成立. 证明:如图,∵∠EPF=45°, ∴∠CPQ=45°. ∵AC⊥BC, ∴∠CQP=∠CPQ, CQ=CP. 在Rt△BCQ和Rt△ACP中, ∴Rt△BCQ≌Rt△ACP(SAS) ∴BQ=AP; 延长BQ交AP于点N, ∴∠PBN=∠CBQ. ∵Rt△BCQ≌Rt△ACP, ∴∠BQC=∠APC. 在Rt△BCQ中,∠BQC+∠CBQ=90°, ∴∠APC+∠PBN=90°. ∴∠PNB=90°. ∴BQ⊥AP. 【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质. 5.(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运 解析:(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可. 【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (2)如图2, ∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=, ∴∠DBA=∠CAE, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (3)如图3, 由(2)可知,△ADB≌△CEA, ∴BD=AE,∠DBA=∠CAE, ∵△ABF和△ACF均为等边三角形, ∴∠ABF=∠CAF=60°,BF=AF, ∴∠DBA+∠ABF=∠CAE+∠CAF, ∴∠DBF=∠FAE, ∵在△DBF和△EAF中, , ∴△DBF≌△EAF(SAS), ∴DF=EF,∠BFD=∠AFE, ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°, ∴△DEF为等边三角形. 【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键. 6.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可. (1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键. 7.(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥ 解析:(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值. (3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值. (1) 解:在和中,如图1 即 (2) 解: 当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值 (3) 解:如图2,设则 为与的角平分线的交点 即 【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值. 8.(1) (2),见解析 (3)且,见解析 【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT= 解析:(1) (2),见解析 (3)且,见解析 【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT=BH=2,可得结论; (2)结论:MN=ME+NF.证明△BFN≌△BEK(SAS),推出BN=BK,∠FBN=∠EBK,再证明△BMN≌△BMK(SAS),推出MN=MK,可得结论; (3)结论:DH=CH,DH⊥CH.如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M.证明△JDC是等腰直角三角形,可得结论. 【详解】解:(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H. ∵A(0,4),C(﹣2,﹣2), ∴OA=4,OT=CT=2, ∴AT=4+2=6, ∵∠ACB=∠ATC=∠H=90°, ∴∠CAT+∠ACT=90°,∠BCH+∠CBH=90°, ∴∠CAT=∠BCH, ∵CA=CB, ∴△ATC≌△CHB(AAS), ∴AT=CH=6,CT=BH=2, ∴TH=CH﹣CT=4, ∴B(4,-4); (2)结论:MN=ME+NF. 理由:在射线OE上截取EK=FN,连接BK. ∵B(4,4),BE⊥y轴,BF⊥x轴, ∴BE=BF=4,∠BEO=∠BFO=∠EOF=90°, ∴四边形BEOF是矩形, ∴∠EBF=90°, ∵EK=FN,∠BFN=∠BEK=90°, ∴△BFN≌△BEK(SAS), ∴BN=BK,∠FBN=∠EBK, ∴∠NBK=∠FBE=90°, ∵∠MBN=45°, ∴∠MBN=∠BMK=45°, ∵BM=BM, ∴△BMN≌△BMK(SAS), ∴MN=MK, ∵MK=ME+EK, ∴MN=EM+FN; (3)结论:DH=CH,DH⊥CH. 理由:如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M. ∵AH=HG,∠AHJ=∠GHD,HJ=HD, ∴△AHJ≌△GHD(SAS), ∴AJ=DG,∠AJH=∠DGH, ∴AJ∥DM, ∴∠JAC=∠AMD, ∵DG=BD, ∴AJ=BD, ∵∠MCB=∠BDM=90°, ∴∠CBD+∠CMD=180°, ∵∠AMD+∠CMD=180°, ∴∠AMD=∠CBD, ∴∠CAJ=∠CBD, ∵CA=CB, ∴△CAJ≌△CBD(SAS), ∴CJ=CD,∠ACJ=∠BCD, ∴∠JCD=∠ACB=90°, ∵JH=HD, ∴CH⊥DJ,CH=JH=HD, 即CH=DH,CH⊥DH. 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 9.(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明 解析:(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得 (3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值. 【详解】(1)∵点在x轴负半轴上, ∴,, ∵,, ∴, ∵, ∴, ∴, 如答图1,在x轴的正半轴上取点C,使,连接BC, ∵, ∴, 又∵, ∴, ∴, ∴是等边三角形, ∴; (2)如答图2,连接BM, ∴是等边三角形, ∵,, ∵∠, ∴, ∴, ∵D为AB的中点, ∴, ∵, ∴, ∴,在和中, ∴, ∴,即, ∴, ∴为等边三角形, ∴,∴; (3)如答图3,过点F作轴交CB的延长线于点N, 则, ∵, ∴, 在和中, ∴, ∴,, ∵, ∴, 又∵E是OC的中点,设, ∴等边三角形ABC的边长是4a,, ∵, ∴, 在和中, ∴, ∴, 又∵, ∴, , ∴. 【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 压轴 强化 数学 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文