数值计算方法复习.doc
《数值计算方法复习.doc》由会员分享,可在线阅读,更多相关《数值计算方法复习.doc(12页珍藏版)》请在咨信网上搜索。
2016计算方法复习 务必通过本提纲例子和书上例子掌握如下书本内容: 1. 会高斯消去法;会矩阵三角分解法;会Cholesky分解的平方根法求解方程组 2. 会用插值基函数;会求Lagrange, 会计算差商和Newton插值多项式和余项 3. 会Jacobi迭代、Gauss-Seidel迭代的分量形式,迭代矩阵,谱半径,收敛性 4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速 5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题 6. 会最小二乘法多项式拟合 7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式 第1章、数值计算引论 (一)考核知识点 误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。 (二) 复习要求 1.了解数值分析的研究对象与特点。 2.了解误差来源与分类,会求有效数字; 会简单误差估计。 3.了解误差的定性分析及避免误差危害。 (三) 例题 例1. 设x=0.231是精确值x*=0.229的近似值,则x有2位有效数字。 例2. 为了提高数值计算精度, 当正数充分大时, 应将改写为 。 例3. 的相对误差约是的相对误差的1/3 倍. 第2章、非线性方程的数值解法 (一)考核知识点 对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen斯特芬森迭代法;牛顿法;弦截法。 (二) 复习要求 1.了解求根问题和二分法。 2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。 3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。 4.掌握牛顿法及其收敛性、下山法, 了解重根情形。 5.了解弦截法。 (三)例题 1.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( ) (A) (B) (C) (D)迭代公式 解:在(A)中,=1.076 故迭代发散。应选择(A)。 可以验证在(B),(C), (D)中,j(x)满足,迭代收敛。 2.用Newton法求方程在区间内的根, 要求。 解 此方程在区间内只有一个根,而且在区间(2,4)内。设 则 , Newton法迭代公式为 , 取,得。 3.设可微,求方程根的Newton迭代格式为 4. 牛顿切线法是用曲线f(x)上的点的切线与x轴的交点的横坐标逐步逼近f(x)=0的解;而弦截法是用曲线f(x)上的;两点的连线与x轴的交点的横坐标逐步逼近f(x)=0的解. 5. 试确定常数使迭代公式 . 产生的序列{}收敛到,并使收敛阶尽量高. 解 因为迭代函数为,而.根据定理知,要使收敛阶尽量高,应有,,,由此三式即可得到所满足的三个方程为: ,,. 解之得,,且,故迭代公式是三阶收敛的. P25.例2-4 P30.例2-6 P33.例2-8 P35例2-10 P35.例2-11 P38.例2-13 P39.例2-14 P41.例2-16 P45.例2-18 P48.例2-20 第3章、线性代数方程组的数值解法 (一)考核知识点 高斯消去法,列主元消去法;矩阵三角分解法;平方根法;追赶法;迭代法的基本概念,雅可比迭代法与高斯-塞德尔迭代法,超松弛迭代法SOR,迭代解数列收敛的条件。 (二) 复习要求 1.了解矩阵基础知识,了解向量和矩阵的几种范数。 2.掌握高斯消去法,掌握高斯列主元素消去法。 4.掌握直接三角分解法,平方根法,了解追赶法,了解有关结论。 5.了解矩阵和方程组的性态,会求其条件数。 6.了解迭代法及其收敛性的概念。 7.掌握雅可比(Jacobi)迭代法、高斯-赛德尔(Gauss-Seidel)迭代法和超松弛(SOR)迭代法。 (三)例题 1.分别用顺序Gauss消去法和直接三角分解法(杜利脱尔分解)求解线性方程组 解:1) Gauss消去法 , 回代 x3=3, x2=2, x1=1 2) 直接三角分解法(杜利脱尔分解): =LU 解Ly=b得y=(14,-10,-72)T 解,Ux=y得x=(1,2,3)T 2. 用平方根法(Cholesky分解)求解方程组: 解:由系数矩阵的对称正定性,可令,其中L为下三角阵。 求解可得, 求解可得 3.讨论的Jacobi迭代和Gauss-Seidel迭代的收敛性 其中, 解:Jacobi迭代法的迭代矩阵 则 Jacobi迭代收敛 Gauss-Seidel迭代矩阵 Gauss-Seidel迭代发散. 4.已知方程组,其中 , (1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式; (2)讨论上述两种迭代法的收敛性。 解:(1)Jacobi迭代法: Jacobi迭代矩阵: 收敛性不能确定 (2)Gauss-Seidel迭代法: Gauss-Seidel迭代矩阵: 该迭代法收敛 5. 给定方程组,用雅可比迭代法和高斯-塞德尔迭代法是否收敛? 解:由系数矩阵可知, (1)雅可比迭代矩阵为,由 可知,,因而雅可比迭代法发散。 (2)高斯-塞德尔迭代矩阵为 ,由 可知,,因而高斯-塞德尔迭代法收敛。 P68.例3-3 P68.例3-4 P72.例3-5 P76.例3-7 P77.例3-8 P78.例3-9 P79.例3-10 P88.例3-15 P89.例3-16 P91.例3-17 P98.例3-24 P110.例3-30 P111.例3-31 P118.例3-36 第4章、插值法 (一)考核知识点 插值多项式,插值基函数,拉格朗日插值多项式,差商及其性质,牛顿插值多项式,差分与等距插值;分段线性插值;样条函数,三次样条插值函数。 (二) 复习要求 1.了解插值的概念。 2.掌握拉格朗日(Lagrange)插值法及其余项公式。 3.了解均差的概念及基本性质,掌握牛顿插值法。 4.了解差分的概念,会牛顿前插公式、后插公式。 5.了解埃尔米特(Hermite)插值及其余项公式。 6.知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误差和收敛性。 7.会三次样条插值,知道其误差和收敛性。 (三)例题 例1. 设,则-x(x-2),的二次牛顿插值多项式为; 例2. 设l0(x),l1(x),l2(x),l3(x)是以x0,x1,x2,x3为互异节点的三次插值基函数,则= 例3. 给定数据表:, 1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。 解: 一阶差商 二阶差商 三阶差商 四阶差商 1 4 2 1 -3 4 0 6 1 7 1 0 由差商表可得4次牛顿插值多项式为: , 插值余项为 。 例4 已知函数y=f(x)的观察数据为 xk -2 0 4 5 yk 5 1 -3 1 试构造f(x)的拉格朗日多项式Pn (x),并计算f(-1)。 解 先构造基函数 所求三次多项式为 P3(x)= =+-+ = P3(-1)= 例5. 已知一组观察数据为 0 1 2 1 2 3 试用此组数据构造Lagrange插值多项式, 并求。 解: , 所以 =, 。 例6.,求,. 解:, P130.例4-4 P131.例4-5 P133.例4-7 P135.例4-10 P142.例4-13 P143.例4-14 P145.例4-15 第5章、曲线拟合 (一)考核知识点 勒让德多项式;切比雪夫多项式;曲线拟合; 最小二乘法,正则方程组,线性拟合,超定方程组的最小二乘解,多变量的数据拟合,多项式拟合;正交多项式曲线拟合. (二) 复习要求 1.了解函数逼近的基本概念,了解范数和内积空间。 2.了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用正交多项式。 3.了解曲线拟合的最小二乘法并会计算,了解用正交多项式做最小二乘拟合。 (三)例题 1.已知实验数据如下: 19 25 31 38 44 19.0 32.3 49.0 73.3 97.8 用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。 解:由题意,, , , 。 。 故法方程为,解得。 均方误差为 2. 给定数据表 x -2 -1 0 1 2 y -0.1 0.1 0.4 0.9 1.6 试用三次多项式以最小二乘法拟合所给数据. 解 , 正则方程 的解为,,, 得到三次多项式 P174.例5-1 P176.例5-3 P178.例5-5 P180.例5-6 P181.例5-7 P182.例5-8 第6章、数值积分与数值微分 (一)考核知识点 代数精度;插值型求积公式,牛顿—柯特斯公式,梯形公式和辛普森公式, 复合求积公式,求积公式的误差,步长的自动选择,龙贝格求积公式,高斯型求积公式。(二点、三点)高斯―勒让德求积公式。 (二) 复习要求 1.了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的收敛性和稳定性。 2.掌握牛顿-柯特斯公式及其性质和余项; 梯形公式和辛普生公式. 3. 掌握复化梯形公式和复化辛普森公式及其余项。 4. 掌握龙贝格(Romberg)求积算法。 5.会高斯求积公式。 (三)例题 1.用下列方法计算积分,并比较结果。 (1)龙贝格方法; (2)三点及五点高斯公式. 解: (1)采用龙贝格方法可得 k 0 1.333333 1 1.166667 1.099259 2 1.116667 1.100000 1.099259 3 1.103211 1.098726 1.098641 1.098613 4 1.099768 1.098620 1.098613 1.098613 1.098613 故有 (2)采用高斯公式时 此时 令则 利用三点高斯公式,则 利用五点高斯公式,则 2.用复化梯形公式和复化辛普森公式计算下列积分: ; n=8; 解: 。 精确值为。 P200.例6-5 P205.例6-8 P207.例6-9 P210.例6-11 P213.例6-12 P214.例6-13 P216.例6-14 P219.例6-15 P225.例6-17,例6-18 第7章、常微分方程初值问题的数值解法 (一)考核知识点 欧拉法, 后退欧拉法;梯形公式; 改进欧拉法;龙格―库塔法,局部截断误差。 (二) 复习要求 1.掌握欧拉法和改进的欧拉法,知道其局部截断误差。 2. 知道龙格¾库塔法的基本思想。知道二阶、三阶龙格¾库塔法。掌握四阶龙格――库塔法,知道龙格¾库塔法的局部截断误差。 (三)例题 例1 用欧拉法解初值问题,取步长h=0.2。 解h=0.2, f(x)=-y-xy2。首先建立欧拉迭代格式 当k=0,x1=0.2时,已知x0=0,y0=1, 有y(0.2)»y1=0.2×1(4-0×1)=0.8 当k=1,x2=0.4时,已知x1=0.2, y1=0.8, 有y(0.4)»y2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k=2,x3=0.6时,已知x2=0.4,y2=0.6144, 有y(0.6)»y3=0.2×0.6144×(4-0.4×0.6144)= 0.461321 例2 设初值问题 . 写出用改进的Euler法解上述初值问题数值解的公式,若,求解,保留两位小数。 解:改进的Euler公式是: 具体到本题中,求解的公式是: 代入求解得:, 例3.求解初值问题,取步长, 经典四阶龙格—库塔法的求解公式为: 其中 k1=8-3 yk;k2=5.6-2.1 yk;k3=6.32-2.37yk; k4=4.208+1.578yk 即 P240.例7-1 P244.例7-2 P251.例7-3- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 计算方法 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文