二次函数一般是中a-b-c与图像都关系.doc
《二次函数一般是中a-b-c与图像都关系.doc》由会员分享,可在线阅读,更多相关《二次函数一般是中a-b-c与图像都关系.doc(79页珍藏版)》请在咨信网上搜索。
. 二次函数图像与系数a,b,c的关系 一.选择题(共35小题) 1.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 2.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法: ①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0 其中正确的个数为( ) A.1 B.2 C.3 D.4 3.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( ) A.①③④ B.②④⑤ C.①②⑤ D.②③⑤ 4.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac<b2; ②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3; ③3a+c>0 ④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x增大而增大 其中结论正确的个数是( ) A.4个 B.3个 C.2个 D.1个 5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a; 其中正确的结论是( ) A.①③④ B.①②③ C.①②④ D.①②③④ 6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论: ①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣. 其中正确结论的个数是( ) A.4 B.3 C.2 D.1 7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是( ) A.1 B.2 C.3 D.4 8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 9.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a<;④b>1.其中正确的结论是( ) A.①② B.②③ C.③④ D.②④ 10.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是( ) A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3 11.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2, 其中正确结论是( ) A.②④ B.①④ C.①③ D.②③ 12.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB=OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为( ) A.0 B.1 C.2 D.3 13.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正确的是( ) A.①④ B.②④ C.①②③ D.①②③④ 14.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a﹣b+c>0; ②3a+b=0; ③b2=4a(c﹣n); ④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根. 其中正确结论的个数是( ) A.1 B.2 C.3 D.4 15.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①c>0; ②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2; ③2a﹣b=0; ④<0, 其中,正确结论的个数是( ) A.1 B.2 C.3 D.4 16.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大. 其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 17.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论: ①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1), 其中正确结论的个数是( ) A.4个 B.3个 C.2个 D.1个 18.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是( ) A.1 B.2 C.3 D.4 19.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( ) A. B. C. D. 20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2, 其中,正确的个数有( ) A.1 B.2 C.3 D.4 21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是( ) ①a>0;②b>0;③c<0;④b2﹣4ac>0. A.1 B.2 C.3 D.4 22.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论: ①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0. 其中所有正确结论的序号是( ) A.③④ B.②③ C.①④ D.①②③ 23.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是( ) A.①② B.②③ C.②④ D.①③④ 24.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是( ) A.1 B.2 C.3 D.4 25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论: ①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0 其中正确的是( ) A.①② B.只有① C.③④ D.①④ 26.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是( ) A.2 B.3 C.4 D.5 27.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( ) A.2个 B.3个 C.4个 D.5个 28.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是( ) A.1 B.2 C.3 D.4 29.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是( ) A.①② B.②③ C.①③ D.①②③④ 30.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( ) A.1 B.2 C.3 D.4 31.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2, 其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 32.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论( )①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有( ) A.①②③ B.②③⑤ C.②③④ D.③④⑤ 33.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论: ①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2. 其中正确的结论有( ) A.4个 B.3个 C.2个 D.1个 34.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c>3b,其中正确的结论序号为( ) A.①②③ B.①③④ C.①③④⑤ D.②③④ 35.二次函数的图象如图,给出下列四个结论:①abc>0②4ac﹣b2<0;③3b+2c<0;④m(am+b)<a﹣b,其中正确的是( ) A.1个 B.2个 C.3个 D.4个 评卷人 得 分 二.填空题(共5小题) 36.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是 .(填写正确结论的序号) 37.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是 (填入正确结论的序号). 38.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是 (填写序号). 39.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是 .(只填写序号) 40.二次函数y=ax2+bx+c的图象如图所示,给出下列结论: ①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|. 其中正确的结论是 (写出你认为正确的所有结论序号). 2018年08月18日187****6232的初中数学组卷 参考答案与试题解析 一.选择题(共35小题) 1.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可. 【解答】解:∵二次函数y=ax2+bx+c图象经过原点, ∴c=0, ∴abc=0 ∴①正确; ∵x=1时,y<0, ∴a+b+c<0, ∴②不正确; ∵抛物线开口向下, ∴a<0, ∵抛物线的对称轴是x=﹣, ∴﹣,b<0, ∴b=3a, 又∵a<0,b<0, ∴a>b, ∴③正确; ∵二次函数y=ax2+bx+c图象与x轴有两个交点, ∴△>0, ∴b2﹣4ac>0,4ac﹣b2<0, ∴④正确; 综上,可得 正确结论有3个:①③④. 故选:C. 【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c). 2.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法: ①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0 其中正确的个数为( ) A.1 B.2 C.3 D.4 【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号. 【解答】解:①图象开口向下,能得到a<0; ②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0; ③当x=1时,y>0,则a+b+c>0; ④由图可知,当﹣1<x<3时,y>0. 故选:C. 【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 3.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( ) A.①③④ B.②④⑤ C.①②⑤ D.②③⑤ 【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:∵抛物线开口向下, ∴a<0, ∵﹣=﹣2, ∴b=4a,ab>0, ∴①错误,④正确, ∵抛物线与x轴交于﹣4,0处两点, ∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4, ∴②⑤正确, ∵当x=﹣3时y>0,即9a﹣3b+c>0, ∴③错误, 故正确的有②④⑤. 故选:B. 【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用 4.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac<b2; ②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3; ③3a+c>0 ④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x增大而增大 其中结论正确的个数是( ) A.4个 B.3个 C.2个 D.1个 【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断. 【解答】解:∵抛物线与x轴有2个交点, ∴b2﹣4ac>0,所以①正确; ∵抛物线的对称轴为直线x=1, 而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0), ∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确; ∵x=﹣=1,即b=﹣2a, 而x=﹣1时,y=0,即a﹣b+c=0, ∴a+2a+c=0,所以③错误; ∵抛物线与x轴的两点坐标为(﹣1,0),(3,0), ∴当﹣1<x<3时,y>0,所以④错误; ∵抛物线的对称轴为直线x=1, ∴当x<1时,y随x增大而增大,所以⑤正确. 故选:B. 【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点. 5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a; 其中正确的结论是( ) A.①③④ B.①②③ C.①②④ D.①②③④ 【分析】①先由抛物线的对称性求得抛物线与x轴令一个交点的坐标为(3,0),从而可知当x>3时,y<0; ②由抛物线开口向下可知a<0,然后根据x=﹣=1,可知:2a+b=0,从而可知3a+b=0+a=a<0; ③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤﹣3a≤3.④由4ac﹣b2>8a得c﹣2<0与题意不符. 【解答】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x>3时,y<0,故①正确; ②抛物线开口向下,故a<0, ∵x=﹣=1, ∴2a+b=0. ∴3a+b=0+a=a<0,故②正确; ③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a, 令x=0得:y=﹣3a. ∵抛物线与y轴的交点B在(0,2)和(0,3)之间, ∴2≤﹣3a≤3. 解得:﹣1≤a≤﹣,故③正确; ④.∵抛物线y轴的交点B在(0,2)和(0,3)之间, ∴2≤c≤3, 由4ac﹣b2>8a得:4ac﹣8a>b2, ∵a<0, ∴c﹣2< ∴c﹣2<0 ∴c<2,与2≤c≤3矛盾,故④错误. 故选:B. 【点评】本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键. 6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论: ①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣. 其中正确结论的个数是( ) A.4 B.3 C.2 D.1 【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断. 【解答】解:∵抛物线开口向下, ∴a<0, ∵抛物线的对称轴在y轴的右侧, ∴b>0, ∵抛物线与y轴的交点在x轴上方, ∴c>0, ∴abc<0,所以①正确; ∵抛物线与x轴有2个交点, ∴△=b2﹣4ac>0, 而a<0, ∴<0,所以②错误; ∵C(0,c),OA=OC, ∴A(﹣c,0), 把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0, ∴ac﹣b+1=0,所以③正确; 设A(x1,0),B(x2,0), ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点, ∴x1和x2是方程ax2+bx+c=0(a≠0)的两根, ∴x1•x2=, ∴OA•OB=﹣,所以④正确. 故选:B. 【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点. 7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是( ) A.1 B.2 C.3 D.4 【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可. ②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a>0,据此解答即可. ③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=8a,确定出a的取值范围即可. ④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可. 【解答】解:∵抛物线开口向上, ∴a>0, ∵对称轴在y轴左边, ∴b>0, ∵抛物线与y轴的交点在x轴的上方, ∴c+2>2, ∴c>0, ∴abc>0, ∴结论①不正确; ∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点, ∴△=0, 即b2﹣4a(c+2)=0, ∴b2﹣4ac=8a>0, ∴结论②不正确; ∵对称轴x=﹣=﹣1, ∴b=2a, ∵b2﹣4ac=8a, ∴4a2﹣4ac=8a, ∴a=c+2, ∵c>0, ∴a>2, ∴结论③正确; ∵对称轴是x=﹣1,而且x=0时,y>2, ∴x=﹣2时,y>2, ∴4a﹣2b+c+2>2, ∴4a﹣2b+c>0. ∴结论④正确. 综上,可得 正确结论的个数是2个:③④. 故选:B. 【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c). 8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=2对应y值的正负判断即可. 【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0, ∵对称轴在y轴右侧,且﹣=1,即2a+b=0, ∴a与b异号,即b<0, ∴abc>0,选项①正确; ∵二次函数图象与x轴有两个交点, ∴△=b2﹣4ac>0,即b2>4ac,选项②错误; ∵原点O与对称轴的对应点为(2,0), ∴x=2时,y<0,即4a+2b+c<0,选项③错误; ∵x=﹣1时,y>0, ∴a﹣b+c>0, 把b=﹣2a代入得:3a+c>0,选项④正确, 故选:B. 【点评】此题考查了二次函数图象与系数的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 9.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a<;④b>1.其中正确的结论是( ) A.①② B.②③ C.③④ D.②④ 【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:①∵抛物线的开口向上,∴a>0, ∵与y轴的交点为在y轴的负半轴上,∴c<0, ∵对称轴为x=<0,∴a、b同号,即b>0, ∴abc<0, 故本选项错误; ②当x=1时,函数值为2, ∴a+b+c=2; 故本选项正确; ③∵对称轴x=>﹣1, 解得:<a, ∵b>1, ∴a>, 故本选项错误; ④当x=﹣1时,函数值<0, 即a﹣b+c<0,(1) 又a+b+c=2, 将a+c=2﹣b代入(1), 2﹣2b<0, ∴b>1 故本选项正确; 综上所述,其中正确的结论是②④; 故选:D. 【点评】二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0. (2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2﹣4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<0. (5)当x=1时,可确定a+b+c的符号,当x=﹣1时,可确定a﹣b+c的符号. (6)由对称轴公式x=,可确定2a+b的符号. 10.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是( ) A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3 【分析】利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可. 【解答】解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3), ∴0=a﹣b+c,﹣3=c, ∴b=a﹣3, ∵当x=1时,y=ax2+bx+c=a+b+c, ∴P=a+b+c=a+a﹣3﹣3=2a﹣6, ∵顶点在第四象限,a>0, ∴b=a﹣3<0, ∴a<3, ∴0<a<3, ∴﹣6<2a﹣6<0, 即﹣6<P<0. 故选:B. 【点评】此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键. 11.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2, 其中正确结论是( ) A.②④ B.①④ C.①③ D.②③ 【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:∵抛物线的开口方向向下, ∴a<0; ∵抛物线与x轴有两个交点, ∴b2﹣4ac>0,即b2>4ac, 故①正确 由图象可知:对称轴x=﹣=﹣1, ∴2a﹣b=0, 故②错误; ∵抛物线与y轴的交点在y轴的正半轴上, ∴c>0 由图象可知:当x=1时y=0, ∴a+b+c=0; 故③错误; 由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2, 故④正确. 故选:B. 【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定. 12.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB=OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为( ) A.0 B.1 C.2 D.3 【分析】由根与系数的关系及二次函数y=ax2+bx+c的图象坐标逐一求判定即可. 【解答】解:①∵OB=OC, ∴C(0,c),B(﹣c,0) 把B(﹣c,0)代入y=ax2+bx+c得0=ac2﹣bc+c,即0=ac2+c(1﹣b), ∵a>0, ∴1﹣b<0,即b>1, 如果b=2,由0=ac2﹣bc+c,可得ac=1,此是△=b2﹣4ac=0,故b>1且b≠2正确, ②∵a>0,b>0,c>0,设C(0,c),B(﹣c,0) ∵AB=|x1﹣x2|<2, ∴(x1+x2)2﹣4x1x2<4, ∴(﹣)2﹣4×<4,即﹣<4, ∴b2﹣4ac<4a2;故本项正确. ③把B(﹣c,0)代入y=ax2+bx+c可得ac+1=b, 代入y=ax2+bx+c得y=ax2+(ac+1)x+c=ax2+acx+x+c=ax2+x+acx+c=x(ax+1)+c(ax+1)=(x+c)(ax+1), 解得x1=﹣c,x2=﹣, 由图可得x1,x2>﹣2, 即﹣>﹣2, ∵a>0, ∴<2, ∴a>;正确. 所以正确的个数是3个. 故选:D. 【点评】本题主要考查了二次函数图象与系数的关系.解题的关键是根与系数的灵活运用. 13.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正确的是( ) A.①④ B.②④ C.①②③ D.①②③④ 【分析】由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=﹣2a,加上x=﹣1时,y>0,即a﹣b+c>0,则可对④进行判断. 【解答】解:∵抛物线开口向上, ∴a>0, ∵抛物线的对称轴为直线x=﹣=1, ∴b=﹣2a<0, ∴ab<0,所以①正确; ∵抛物线与x轴有2个交点, ∴△=b2﹣4ac>0,所以②正确; ∵x=1时,y<0, ∴a+b+c<0, 而c<0, ∴a+b+2c<0,所以③正确; ∵抛物线的对称轴为直线x=﹣=1, ∴b=﹣2a, 而x=﹣1时,y>0,即a﹣b+c>0, ∴a+2a+c>0,所以④错误. 故选:C. 【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数有△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点. 14.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a﹣b+c>0; ②3a+b=0; ③b2=4a(c﹣n); ④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根. 其中正确结论的个数是( ) A.1 B.2 C.3 D.4 【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断. 【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1, ∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间. ∴当x=﹣1时,y>0, 即a﹣b+c>0,所以①正确; ∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a, ∴3a+b=3a﹣2a=a,所以②错误; ∵抛物线的顶点坐标为(1,n), ∴=n, ∴b2=4ac﹣4an=4a(c﹣n),所以③正确; ∵抛物线与直线y=n有一个公共点, ∴抛物线与直线y=n﹣1有2个公共点, ∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确. 故选:C. 【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 一般 图像 关系
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文