排列组合问题解法总结.doc
《排列组合问题解法总结.doc》由会员分享,可在线阅读,更多相关《排列组合问题解法总结.doc(4页珍藏版)》请在咨信网上搜索。
1、.排列组合问题的常见解法一.元素相同问题隔板策略例1.有10个运发动名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差异,把它们排成一排相邻名额之间形成个空隙在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有种分法注:这和投信问题是不同的,投信问题的关键是信不同,邮筒也不同,而这里的问题是邮筒不同,但信是相同的即班级不同,但名额都是一样的练习题:1.10个相同的球装5个盒中,每盒至少一个有多少装法? 2.求这个方程组的自然数解的组数 二.环排问题直排策略如果在圆周上个不同的位置编上不同的号码,那么从个不同的元素的中选取个不同的
2、元素排在圆周上不同的位置,这种排列和直线排列是相同的;如果从个不同的元素的中选取个不同的元素排列在圆周上,位置没有编号,元素间的相对位置没有改变,不计顺逆方向,这种排列和直线排列是不同的,这就是环形排列的问题一个个元素的环形排列,相当于一个有个顶点的多边形,沿相邻两个点的弧线剪断,再拉直就是形成一个直线排列,即一个个元素的环形排列对应着个直线排列,设从个元素中取出个元素组成的环形排列数为个,那么对应的直线排列数为个,又因为从个元素中取出个元素的排成一排的排列数为个,所以,所以即从个元素中取出个元素组成的环形排列数为个元素的环形排列数为例2. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排
3、的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有种排法,即 种练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120三.多排问题直排策略例3.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前个位置,个特殊元素有种排法,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,那么共有种排法排好后,按前个为前排,后人为后排分成两排即可练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种
4、数是 346 解:由于甲乙二人不能相邻,所以前排第1,4,8,11四个位置和后排第,位置是排甲乙中的一个时,与它相邻的位置只能排除一个,而其它位置要排除个,所以共有排列四.排列组合混合问题先选后排策略例4.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,那么不同的选法有 192 种五.小集团问题先整体后局部策
5、略例5.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,在两个奇数之间,这样的五位数有多少个?注:两个偶数,在两个奇数,之间,这是题意,说这个结构不能被打破,故只能排这个结构的外围,也就是说要把这个结构看成一个整体与进行排列解:把,当作一个小集团与排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.练习题:.方案展出10幅不同的画,其中1幅水彩画,幅油画,幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和女生站成一排照像,男生相邻,女生也相邻的排法有种六.正难那么反总体淘汰策略例6.从0,1,2,3,
6、4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有,只含有1个偶数的取法有,和为偶数的取法共有再淘汰和小于10的偶数共9种,符合条件的取法共有练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?七.平均分组问题除法策略例7. 6本不同的书平均分成3堆,每堆2本共有多少分法? 解: 分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,假设第一步取AB,第二步取CD,
7、第三步取EF该分法记为(AB,CD,EF),那么中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(为均分的组数)防止重复计数。练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 15403.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 问题 解法 总结
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。