分享
分销 收藏 举报 申诉 / 10
播放页_导航下方通栏广告

类型高中高考数学所有二级结论《完整版》23604.doc

  • 上传人:a199****6536
  • 文档编号:1671609
  • 上传时间:2024-05-07
  • 格式:DOC
  • 页数:10
  • 大小:496.50KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 高中 高考 数学 所有 二级 结论 23604
    资源描述:
    编辑文本 高中数学二级结论 1. 任意的简单n面体内切球半径为(V是简单n面体的体积,是简单n面体的表面积) 2.在任意内,都有tanA+tanB+tanC=tanA·tanB·tanC 推论:在内,若tanA+tanB+tanC<0,则为钝角三角形 3. 斜二测画法直观图面积为原图形面积的倍 4. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5. 导数题常用放缩、、 6. 椭圆的面积S为 7. 圆锥曲线的切线方程求法:隐函数求导 推论:①过圆上任意一点的切线方程为 ②过椭圆上任意一点的切线方程为 ③过双曲线上任意一点的切线方程为 8. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆的切点弦方程为 ②椭圆的切点弦方程为 . 编辑文本 ③双曲线的切点弦方程为 ④抛物线的切点弦方程为 ⑤二次曲线的切点弦方程为 9. ①椭圆与直线相切的条件是 ②双曲线与直线相切的条件是 10. 若A、B、C、D是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、BD的斜率存在且不等于零,并有,(,分别表示AC和BD的斜率) 11. 已知椭圆方程为,两焦点分别为,,设焦点三角形中,则() 12. 椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为的点P的距离)公式 13. 已知,,为过原点的直线,,的斜率,其中是和的角平分线,则,,满足下述转化关系: ,, 14. 任意满足的二次方程,过函数上一点的切线方程为 15. 已知f(x)的渐近线方程为y=ax+b,则, 16. 椭圆绕Ox坐标轴旋转所得的旋转体的体积为 . 编辑文本 17. 平行四边形对角线平方之和等于四条边平方之和 18. 在锐角三角形中 19. 函数f(x)具有对称轴,,则f(x)为周期函数且一个正周期为 20. y=kx+m与椭圆相交于两点,则纵坐标之和为 21. 已知三角形三边x,y,z,求面积可用下述方法(一些情况下比海伦公式更实用,如,,) 22. 圆锥曲线的第二定义: 椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,)的点的集合(定点F不在定直线上,该常数为小于1的正数) 双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23. 到角公式:若把直线依逆时针方向旋转到与第一次重合时所转的角是,则 24. A、B、C三点共线(同时除以m+n) 25. 过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为 26. 反比例函数为双曲线,其焦点为和,k<0 27.面积射影定理:如图,设平面α外的△ABC在平面α内的射影为△ABO,分别记△ABC的面积和△ABO的面积为S和S′ ,记△ABC所在平面和平面α所成的二面角为θ,则cos θ = S′ : S . 编辑文本 28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例 角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点: 定义:方程的根称为函数的不动点 利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法 定理1:若是的不动点,满足递推关系,则 . 编辑文本 ,即是公比为的等比数列. 定理2:设,满足递推关系,初值条件 (1)若有两个相异的不动点,则 (这里) (2)若只有唯一不动点,则 (这里) 定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时, 30. (1), (2)若,则: ① ② ③ ④ . 编辑文本 ⑤ ⑥ ⑦ ⑧ (3)在任意△ABC中,有: . 编辑文本 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ . 编辑文本 (4)在任意锐角△ABC中,有: . 编辑文本 ① ② ③ ④ . 编辑文本 31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上 32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高 拟柱体体积公式[辛普森(Simpson)公式]:设拟柱体的高为H,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h的不超过3次的函数,那么该拟柱体的体积V为 . 编辑文本 ,式中,和是两底面的面积,是中截面的面积(即平面γ与底面之间距离时得到的截面的面积)   事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A为面上一点,过A的斜线AO在面上的射影为AB,AC为面上的一条直线,那么∠OAC,∠BAC,∠OAB三角的余弦关系为:cos∠OAC=cos∠BAC·cos∠OAB(∠BAC和∠OAB只能是锐角) 34. 在Rt△ABC中,C为直角,内角A,B,C所对的边分别是a,b,c,则△ABC的内切圆半径为 35. 立方差公式: 立方和公式: 36. 已知△ABC,O为其外心,H为其垂心,则 37. 过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值 38. 推论: . 编辑文本 39. . 编辑文本 推论:① ② . 编辑文本 40.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长) 42.向量与三角形四心: 在△ABC中,角A,B,C所对的边分别是a,b,c (1)是的重心 (2)为的垂心 (3)为的内心 (4)为的外心 43.正弦平方差公式: 44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点 45.三角函数数列求和裂项相消: 46.点(x,y)关于直线Ax+By+C=0的对称点坐标为 47.圆锥曲线统一的极坐标方程:(e为圆锥曲线的离心率) 48.超几何分布的期望:若,则(其中为符合要求元素的频率), 49.为公差为d的等差数列,为公比为q的等比数列,若数列满足,则数列的前n项和为 . 编辑文本 50.若圆的直径端点,则圆的方程为 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B两点,则直线AB的斜率为定值 52.二项式定理的计算中不定系数变为定系数的公式: 53.三角形五心的一些性质: (1)三角形的重心与三顶点的连线所构成的三个三角形面积相等 (2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心 (3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心 (6)三角形的中点三角形的外心也是其垂足三角形的外心 (7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍 54.在△ABC中,角A,B,C所对的边分别是a,b,c,则 55.m>n时, 感谢您的支持与配合,我们会努力把内容做得更好! .
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:高中高考数学所有二级结论《完整版》23604.doc
    链接地址:https://www.zixin.com.cn/doc/1671609.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork