通信原理(英文版).ppt
《通信原理(英文版).ppt》由会员分享,可在线阅读,更多相关《通信原理(英文版).ppt(64页珍藏版)》请在咨信网上搜索。
1Chapter 2 Signals2.1 2.1 Classification of Signals Classification of Signals2.1.1 Deterministic signals and random signals2.1.1 Deterministic signals and random signalsWhat is deterministic signal?What is deterministic signal?What is random signal?What is random signal?2.1.2 Energy signals and power signals2.1.2 Energy signals and power signalsSignal power:Let Signal power:Let R R=1,then =1,then P P=V V2 2/R R=I I2 2R R=V V2 2=I I2 2Signal energySignal energy:Let Let S S represent represent V V or or I I,if if S S varies with time varies with time,then S can then S can be rewritten as be rewritten as s s(t t),),Hence,the signal energy Hence,the signal energy E E=s s2 2(t t)d)dt tEnergy signal satisfies Energy signal satisfies Average power:Average power:,then ,then P P=0 for energy signal.=0 for energy signal.For power signal:For power signal:P P 0,i.e.,power signal has infinite duration.0,i.e.,power signal has infinite duration.Energy signal has finite energy,but its average power equals 0.Energy signal has finite energy,but its average power equals 0.Power signal has finite average power,but its energy equals infinity.Power signal has finite average power,but its energy equals infinity.22.2 Characteristics of deterministic signals2.2.1 Characteristics in frequency domain2.2.1 Characteristics in frequency domainl lFrequency spectrum of power signal:let Frequency spectrum of power signal:let s s(t t)be a periodic)be a periodic power signal,its period is power signal,its period is T T0 0,then we have,then we havewhere where 0 0=2=2 /T T0 0=2=2 f f0 0 C C(j(jn n 0 0)is a complex function,)is a complex function,C C(j(jn n 0 0)=|)=|C Cn n|e|ej j n nwhere|where|C Cn n|amplitude of the component with frequency amplitude of the component with frequency nfnf0 0 n n phase of the component with frequency phase of the component with frequency nfnf0 0Fourier series of signal Fourier series of signal s s(t t):):3【Example 2.1Example 2.1】Find the spectrum of a periodic rectangular Find the spectrum of a periodic rectangular wave.wave.Solution:Assume the period of a periodic Solution:Assume the period of a periodic rectangular rectangular wave is wave is T T,the width is the width is ,and the amplitude is,and the amplitude isV,V,thenthenIts frequency spectrum isIts frequency spectrum is 4Frequency spectrum figureFrequency spectrum figure5【Example 2.2Example 2.2】Find the frequency spectrum of a sinusoidal wave Find the frequency spectrum of a sinusoidal wave after full-wave rectification.after full-wave rectification.SolutionSolution:Assume the expression of the signal isAssume the expression of the signal isIts frequency spectrum:Its frequency spectrum:The Fourier series of the signal is:The Fourier series of the signal is:1f(t)t6l lFrequency spectral density of energy signalsFrequency spectral density of energy signalsLet an energy signal be Let an energy signal be s s(t t),then its frequency spectral density),then its frequency spectral density is isThe inverse Fourier transform of The inverse Fourier transform of S S()is the original signal:)is the original signal:【Example 2.3Example 2.3】Find the frequency spectral density of a Find the frequency spectral density of a rectangular pulse.rectangular pulse.Solution:Let the expression of the rectangular pulse beSolution:Let the expression of the rectangular pulse beThen its frequency spectral density isThen its frequency spectral density is its Fourier transform:its Fourier transform:7【Example 2.4Example 2.4】Find the waveform and the frequency spectral Find the waveform and the frequency spectral density of a sample function.density of a sample function.Solution:The definition of the sample function isSolution:The definition of the sample function isthe frequency spectral density the frequency spectral density SaSa(t t)is:)is:From the above equation,we see that From the above equation,we see that SaSa()is a gate function.)is a gate function.【Example 2.5Example 2.5】Find the unit impulse function and its frequency Find the unit impulse function and its frequency spectral density.spectral density.Solution:Unit impulse function is usually called Solution:Unit impulse function is usually called function function (t t).).Its definition isIts definition isThe frequency spectral density of The frequency spectral density of (t):(t):8 (t t)and its frequency spectral density:)and its frequency spectral density:Physical meaning of Physical meaning of functionfunction:It is a pulse with infinite height,infinitesimal width,and unit It is a pulse with infinite height,infinitesimal width,and unit area.area.Sa(t)has the following property:Sa(t)has the following property:WhenWhen k k k k ,amplitudeamplitude ,andand the zero-spacing of the waveform the zero-spacing of the waveform 0 0,Hence,Hence,tttf(f)10t(t)09Characterisitics of Characterisitics of (t t)n n n n (t)is an even function:(t)is an even function:n n (t t)is the derivative of unit step function:)is the derivative of unit step function:Difference between frequency spectral density S(f)of energy Difference between frequency spectral density S(f)of energy signal and frequency spectrum of periodic power signal:signal and frequency spectrum of periodic power signal:n nS S(f f)continuous spectrumcontinuous spectrum;C C(j(jn n 0 0)discretediscreten nUnit of Unit of S S(f f):V/Hz):V/Hz;Unit of Unit of C C(j(jn n 0 0):V):Vn nAmplitude of Amplitude of S S(f f)at a frequency point)at a frequency point infinitesimal infinitesimal u(t)=(t)t10Fig.2.2.6 Unit step function10【Example 2.6Example 2.6】Find the frequency spectral density of a Find the frequency spectral density of a cosinusoidal wave with infinite length.cosinusoidal wave with infinite length.Solution:Let the expression of a cosinusoidal wave be Solution:Let the expression of a cosinusoidal wave be f f(t t)=)=coscos 0 0t,t,then according to eq.(2.2-10),then according to eq.(2.2-10),F F()can be written as)can be written asReferencing eq.(2.2-19),the above equation can be written as:Referencing eq.(2.2-19),the above equation can be written as:Introducing Introducing (t t),the concept of frequency spectral density),the concept of frequency spectral density can be generalized to power signal.can be generalized to power signal.t000(b)频谱密度(a)波形11l lEnergy spectral densityLet the energy of an energy signal Let the energy of an energy signal s s(t t)be)be E E,then the energy,then the energy of the signal is decided byof the signal is decided byIf its frequency spectral density is If its frequency spectral density is S S(f f),then from Parsevals),then from Parsevals theorem we havetheorem we havewhere|where|S S(f f)|)|2 2 is called energy spectral density.is called energy spectral density.The above equation can be rewritten asThe above equation can be rewritten as:where where G G(f f)|S(f)|S(f)|2 2 (J/HzJ/Hz)is energy spectral density.is energy spectral density.Property of Property of G G(f f):Since):Since s s(t t)is a real function,|)is a real function,|S S(f f)|)|2 2 is an is an even function,even function,12l lPower spectral densityPower spectral densityLet the truncated signal of s(t)is Let the truncated signal of s(t)is s sT T(t t),-T T/2 /2 t t T T/2,then/2,thenTo define the power spectral density of the signal as:To define the power spectral density of the signal as:obtain the signal power:obtain the signal power:132.2.2 2.2.2 Characteristics in time domainCharacteristics in time domainl lAutocorrelation functionAutocorrelation functionDefinition of the autocorrelation function for energy signal:Definition of the autocorrelation function for energy signal:Definition of the autocorrelation function for power signal:Definition of the autocorrelation function for power signal:Characteristics:Characteristics:n nR R()is only dependent on)is only dependent on ,but independent of but independent of t.t.n nWhen When =0,=0,R R()of energy signal equals the energy of)of energy signal equals the energy of the signal,and the signal,and R R()of power signal equals the average)of power signal equals the average power of the signal.power of the signal.14l lCross-correlation functionCross-correlation functionDefinition of the cross-correlation function for energy Definition of the cross-correlation function for energy signal:signal:Definition of the cross-correlation function for power signal:Definition of the cross-correlation function for power signal:Characteristics:Characteristics:n n1 1.R.R1212()is dependent on)is dependent on ,and independent of,and independent of t.t.n n2.2.Proof:Let Proof:Let x x=t t+,then then 152.3 Characteristics of random signals2.3.12.3.1 Probability distribution of random variable Probability distribution of random variablel lConcept of random variable:If the random outcome of a trial Concept of random variable:If the random outcome of a trial A A is expressed by is expressed by X X,then we call,then we call X X a random variable,and let its a random variable,and let its value be value be x x.For example,the number of calls received within a given For example,the number of calls received within a given period of time at the telephone exchange is a random variable.period of time at the telephone exchange is a random variable.l lDistribution function of random variableDistribution function of random variableDefinition:Definition:F FX X(x x)=)=P P(X X x x)Characteristics:Characteristics:P P(a a X X b b)+)+P P(X X a a)=)=P P(X X b b),),P P(a a X X b b)=)=P P(X X b b)P P(X X a a),P P(a a X X b b)=)=F FX X(b b)F FX X(a a)16Distribution function of discrete random variable:Distribution function of discrete random variable:n nLet the values of Let the values of X X be:be:x x1 1 x x2 2 x xi i x xn n,their their probabilities are respectively probabilities are respectively p p1 1,p p2 2,p pi i,p pn n,then,thenP P(X X x x1 1)=0,)=0,P P(X X x xn n)=1)=1n n P P(X X x xi i)=)=P P(X X=x x1 1)+)+P P(X X=x x2 2)+)+P P(X X=x xi i),),n nCharacteristics:Characteristics:pp F FX X(-(-)=0)=0pp F FX X(+(+)=1)=1pp If If x x1 1 x x2 2,then,then F FX X(x x1 1)F FX X(x x2 2)-monotonic -monotonic increasing function.increasing function.17Distribution function of continuous random variable:When x is continuous,from the definition of distribution function FX(x)=P(X x)we know that we know that FX(x)is a continuous monotonic increasing function.182.3.22.3.2 Probability density of random variable Probability density of random variablel lProbability density of continuous random variable Probability density of continuous random variable p pX X(x x)Definition of Definition of p pX X(x x):):Meaning of Meaning of p pX X(x x):):n np pX X(x x)is the derivative of)is the derivative of F FX X(x x),and is the slope of the),and is the slope of the curve of curve of F FX X(x x)n nP P(a a 0,0,a a=const.const.Probability density curve:Probability density curve:21l lRandom variable with uniform distributionRandom variable with uniform distributionDefinition:probability densityDefinition:probability densitywhere where a a,b b are constants.are constants.Probability density curve:Probability density curve:bax0pA(x)22l lRandom variable with Rayleigh distributionRandom variable with Rayleigh distributionDefinition:Probability densityDefinition:Probability densitywhere where a a 0,and is a constant.0,and is a constant.Probability density curve:Probability density curve:232.5 Numerical characteristics of random variable2.5.1 Mathematical expectationl lDefinition:for continuouse random variableDefinition:for continuouse random variablel lCharacteristics:Characteristics:If X and Y are independent of each other,and If X and Y are independent of each other,and E E(X X)and)and E E(Y Y)exist,then)exist,then 242.5.2 VariancelDefinition:where Variance can be rewritten as:Proof:For discrete variable:For continuous variable:lCharacteristics:D(C)=0 D(X+C)=D(X),D(CX)=C2D(X)D(X+Y)=D(X)+D(Y)D(X1+X2+Xn)=D(X1)+D(X2)+D(Xn)252.5.3 Momentl lDefinition:the Definition:the k k-th moment of a random variable-th moment of a random variable X X is isk-k-th origin moment is the moment when th origin moment is the moment when a a=0:=0:k-k-th central moment is the moment when :th central moment is the moment when :l lCharacteristics:Characteristics:The first origin moment is the mathematical expectation:The first origin moment is the mathematical expectation:The second central moment is the variance:The second central moment is the variance:262.6 Random process2.6.1 Basic concept of random processl lX X(A A,t t)ensumble consisting of all possible ensumble consisting of all possible“realizations”of an event“realizations”of an event A Al lX X(A Ai i,t),t)a realization of event a realization of event A A,it is a determined,it is a determined time functiontime functionl lX X(A A,t tk k)value of the function at the given time value of the function at the given time t tk kDenote for short:Denote for short:X X(A A,t t)X X(t t)X X(A Ai i,t t)X Xi i (t t)27l lExample:receiver noiseExample:receiver noisel lNumerical characteristics of random process:Numerical characteristics of random process:Statistical mean:Statistical mean:Variance:Variance:Autocorrelation function:Autocorrelation function:282.6.2 Stationary random processlDefinition of stationary random process:A random process whose statistical characteristics is independent of the time origin is called a stationary random process.(or,strict stationary random process)lDefinition of generalized stationary random process:The random process whose mean,variance and autocorrelation function are independent of the time originlCharacteristics of generalized stationary random process:lA strict stationary random process must be a generalized stationary random process;but a generalized stationary random process is not always a strict stationary random process.292.6.3 Ergodicityl lSignificance of ergodicitySignificance of ergodicityA realization of a stationary random process can go through A realization of a stationary random process can go through all states of the process.all states of the process.l lCharacteristic of ergodicity:time average may be replaed by Characteristic of ergodicity:time average may be replaed by statistical mean.For example,statistical mean.For example,Statistical mean of ergodic process Statistical mean of ergodic process mmX X:Autocorrelation function of ergodic process RAutocorrelation function of ergodic process RX X():):If a random process has ergodicity,then it must be a strict If a random process has ergodicity,then it must be a strict stationary random process.However,a strict stationary stationary random process.However,a strict stationary random process is not always ergodic.random process is not always ergodic.30l lErgodicity of stationary communication systemErgodicity of stationary communication system If the signal and the noise are both ergodic,then If the signal and the noise are both ergodic,thenFirst origin moment First origin moment mmX X =E E X X(t t)D.C.component of D.C.compon- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通信 原理 英文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文