统计学作业答案.doc
《统计学作业答案.doc》由会员分享,可在线阅读,更多相关《统计学作业答案.doc(9页珍藏版)》请在咨信网上搜索。
1. 一家调查公司进行一项调查,其目的是为了了解某市电信营业厅大客户对该电信的服务的满意情况。调查人员随机访问了30名去该电信营业厅办理业务的大客户,发现受访的大客户中有9名认为营业厅现在的服务质量较两年前好。试在95%的置信水平下对大客户中认为营业厅现在的服务质量较两年前好的比率进行区间估计。 4.据某市场调查公司对某市80名随机受访的购房者的调查得到了该市购房者中本地人购房比率p的区间估计,在置信水平为10%下,其允许误差E=0.08。则: (1)这80名受访者样本中为本地购房者的比率是多少? (2)若显著性水平为95%,则要保持同样的精度进行区间估计,需要调查多少名购房者。 解:这是一个求某一属性所占比率的区间估计的问题。根据已知n=30,=1.96,根据抽样结果计算出的样本比率为。 总体比率置信区间的计算公式为: 计算得: =30% =(13.60%,46.40%) 5、 某大学生记录了他一个月31天所花的伙食费,经计算得出了这个月平均每天花费10.2元,标准差为2.4元。显著性水平为在5%,试估计该学生每天平均伙食费的置信区间。 解:由已知:10.2,s=2.4,,则其置信区间为: =〔9.36,11.04〕。 该学生每天平均伙食费的95%的置信区间为9.36元到11.04元。 6、 据一次抽样调查表明居民每日平均读报时间的95%的置信区间为〔2.2,3.4〕小时,问该次抽样样本平均读报时间是多少?若样本量为100,则样本标准差是多少?若我想将允许误差降为0.4小时,那么在相同的置信水平下,样本容量应该为多少? 解:样本平均读报时间为:==2.8 由=3.06 7、 某电子邮箱用户一周内共收到邮件56封,其中有若干封是属于广告邮件,并且根据这一周数据估计广告邮件所占比率的95%的置信区间为〔8.9%,16.1%〕。问这一周内收到了多少封广告邮件。若计算出了20周平均每周收到48封邮件,标准差为9封,则其每周平均收到邮件数的95%的置信区间是多少?(设每周收到的邮件数服从正态分布) 解:本周收到广告邮件比率为:==0.125 收到广告邮件数为:n ×=56×0.125=7封 根据已知:=48,n=20,s=9, =[43.68,52.32] 8、 为了解某银行营业厅办理某业务的办事效率,调查人员观察了该银行营业厅办理该业务的柜台办理每笔业务的时间,随机记录了15名客户办理业务的时间,测得平均办理时间为=12分钟,样本标准差为s=4.1分钟,则: (1)其95%的置信区间是多少? (2)若样本容量为40,而观测的数据不变,则95%的置信区间又是多少? 解:(1)根据已知有,n=15,=12,s=4.1。 置信区间为:=〔9.73,14.27〕 (2)若样本容量为n=40,则95%的置信区间为: =〔10.73,13.27〕 1. 电视机显像管批量生产的质量标准为平均使用寿命1200小时,标准差为300小时。某电视机厂宣称其生产的显像管质量大大超过规定的标准。为了进行验证,随机抽取了100件为样本,测得平均使用寿命1245小时。能否说该厂的显像管质量显著地高于规定的标准? (1) 给出上题的原假设和被择假设 (2) 构造适当的检验统计量,并进行假设检验,分析可能会犯的错误(取=0.05) (3) 若要拒绝原假设,样本平均寿命至少要达到多少,此时可能会犯哪类错误,大小如何? 解:(1) (2)验问题属于大样本均值检验,因此构造检验统计量如下: 由题知:=1200,,n=100,=1245,检验统计量的z值为: ==1.5 取=0.05时,拒绝域为z>==1.645。因为z=1.5<1.645,故落入接受域,这说明我们没有充分的理由认为该厂的显像管质量显著地高于规定的标准。 (3) 由上题的分析可知拒绝域为z>==1.645,这要求: 有,=1200+1.645=1249.35 这说明只有样本均达到1249.35以上时,我们才能有充分的理由认为该厂的显像管质量显著地高于规定的标准,这时我们犯错的概率为0.05。 2. 由于时间和成本对产量变动的影响很大,所以在一种新的生产方式投入使用之前,生产厂家必须确信其所推荐新的生产方法能降低成本。目前生产中所用的生产方法成本均值为每小时200元。对某种新的生产方法,测量其一段样本生产期的成本。 (1) 在该项研究中,建立适当的原假设和备择假设。 (2) 当不能拒绝时,试对所做的结论进行评述。 (3) 当可以拒绝时,试对所做的结论进行评述。 解: (1) (2) 当不能拒绝时,说明我们没有充分的证据认为新的生产方法比原来的方法在生产成本上有显著降低,但此时我们可能犯第二类错误,即实际上新的生产方法确实比原来的方法在生产成本上有显著降低,我们对犯该类错误的概率没有做控制。 (3)当可以拒绝时,说明新的生产方法比原来的生产方法在生产成本上有显著降低,但此时我们可能犯第一类错误,即可能新的生产方法比原来的方法在生产成本上并没有显著降低,但由于样本随机性的原因,使检验统计量的值落入拒绝域,我们对这一类错误给予了控制,这就是显著性水平。 3. 某种生产线的感冒冲剂规定每包重量为12克,超重或过轻都是严重问题。从过去的资料知是0.6克,质检员每2小时抽取25包冲剂称重检验,并作出是否停工的决策。假定产品重量服从正态分布。 (1) 建立适当的原假设和备择假设。 (2) 在=0.05时,该检验的决策准则是什么? (3) 如果=12.25克,你将采取什么行动? (4) 如果=11.95克,你将采取什么行动? 解: (1) (2)这是小样本总体均值检验问题,且方差2已知。检验统计量为: 在=0.05时,临界值=1.96,故拒绝域为>1.96。 (3)当=12.25克,z==2.08 由于=2.08>1.96,拒绝。应该对生产线停产检查。 (4)当=11.95克,z==-0.42 由于=0.42<1.96,不能拒绝。不应该对生产线停产检查。 4. 某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65。已知该指标服从正态分布,一直稳定于5.5。从近期来货中抽查了100个样品,得样本均值=55.06,试问: (1) 在=0.05水平上能否接收这批玻璃纸,并分析检验中会犯哪类错误。 (2) 抽查的100个样本的样本平均值为多少时可以接收这批玻璃纸,此时可能犯的错误属于哪种类型? 解:(1) 该检验问题为大样本总体均值检验,且方差已知,故检验统计量为: 在α=0.05水平上,=-1.645,故拒绝域为: z<-1.645 由已知得: ==-18.07<-1.645 故应拒绝原假设,不能接收这批玻璃纸。此时可能会犯第一类错误,即本来这批玻璃纸是符合标准的,但由于抽样的随机性使得样本检验统计量的值落入了拒绝域,从而拒绝接收该批玻璃纸。但这个犯错概率是受到控制的,其出错概率不会超过显著性水平α=0.05。 (2)接受该批玻璃纸,检验统计量值应满足为: -1.645 此时,=65-1.6455.5/=64.095 也就是说检验统计量的值在64.095以上时,才可以接受该批玻璃纸。此时可能犯第二类错误,即可能会接受没有达到标准的玻璃纸,并且这个出错概率我们无法确定。 5. 某洗涤剂厂有一台瓶装洗洁精的灌装机,在生产正常是地,每瓶洗涤洁精的净重服从正态分布,均值为454g,标准差为12g。为检查近期机器是否正常,从中抽出16瓶,称得其净重的平均值为=456.64g。 (1) 试对机器正常与否作出判断。(取=0.01,并假定不变) (2) 若标准差未知,但测得16瓶洗涤洁精的样本标准差为s=12g,试对机器是否正常作出判断。(取=0.01) 解:(1) 在=0.01时,,从而拒绝域为。现由样本求得 由于,故不能拒绝,即认为机器正常。 (2)当方差未知时,假设形式与上一问是相同的,只是检验统计量变为: 在α=0.01时,拒绝域为。 由于,故不能拒绝,即认为机器正常。 6. 某厂产品的优质品率一直保持在40%,近期技监部门来厂抽查,共抽查了15件产品,其中优质品为5件,在α=0.05水平上能否认为其优质品率仍保持在40%? 解 检验统计量为: , 在α=0.05水平上拒绝域为,由已知数据得检验统计量: =, 由于,故接受原假设,即可以认为该厂产品优质品率保持在40%。 7. 已知某种木材的横纹抗压力服从正态分布,该种木材的标准抗压力应不小于470kg/cm2,现对某木材厂的十个试件作横纹抗压力试验,得数据如下:(kg/cm2) 482 493 457 471 510 446 435 418 394 469 (1)若已知该木材的横纹抗压力的标准差=36,试检验该厂的木材是否达到标准。(=0.05) (2)若该木材的横纹抗压力的标准差未知,试检验该厂的木材是否达到标准。(=0.05) 解:(1) 由于方差已知,且样本为小样本,检验统计量为: 拒绝域为: 由已知计算得: =-1.098 由于z=-1.098>-,故接受原假设,即可认为该厂的木材达标。 (2) 此时方差未知,且样本为小样本,检验统计量为: 拒绝域为: 由已知计算得: =-1.122 由于,故接受原假设,即可认为该厂木材达标 8. 一条自动装配线预定的平均操作完成时间是2.2分钟。由于完成时间对装配操作前后都会产生影响,所以将完成时间控制在2.2分钟是很重要的。45次装配的随机样本显示:样本的平均完成时间是2.39分钟,样本的标准差是0.20分钟。采用=0.02的显著性水平,检验平均操作完成时间是否为2.2分钟。 解: 检验统计量为: 在显著性水平α=0.02下,拒绝域为: =2.33 由已知计算得:==-6.373 由于,故拒绝原假设,即可认为该自动装配线的平均操作时间不为2.2分钟。 9. 假定某商店中一种商品的日销售量服从正态分布,未知,根据已往经验,其销售量均值为=60。该商店在某一周中进行了一次促销活动,其一周的日销量数据分别为:64,57,49,81,76,70,59。为测量促销是否有效,试对其进行假设检验,给出你的结论。(=0.01) 解: 检验统计量为: 拒绝域为: 根据样本数据计算检验统计量值为: 由于,故不能拒绝原假设,也就是说促销效果不明显。 10. 在某电视节目收视率一直保持在30%,即100人中有30人收看该电视节目,在最近的一次电视收视率调查中,调查了400人,其中有100人收看了该电视节目,可否认为该电视节目的收视率仍保持原有水平。(=0.01) 解 , 检验统计量为: 拒绝域为: 根据已知计算检验统计量值为: 由于,故不拒绝原假设,即该节目的收视率仍保持原有水平。 [此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好] 最新可编辑word文档- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 作业 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文