钢结构框架体系的结构系统可靠度计算.docx
《钢结构框架体系的结构系统可靠度计算.docx》由会员分享,可在线阅读,更多相关《钢结构框架体系的结构系统可靠度计算.docx(14页珍藏版)》请在咨信网上搜索。
第十七章 结构系统可靠度计算 第一节 结构可靠度基本概念 一、结构的功能要求 各种工程结构都必须满足下列四项基本要求: (1) 能承受在正常施工和正常使用时可能出现的各种作用; (2) 在正常使用时具有良好的工作性能; (3) 正常维护下具有良好的耐久性能; (4) 在偶然事件发生时(如地震、火灾等)及发生后,仍能保持必须的整体稳定性。 上述第(1)、(4)项为结构的安全性要求,第(2)项为结构的使用性要求,第(3)项为结构的耐久性要求。结构若同时满足安全性、适用性和耐久性要求,则称该结构可靠,即结构的可靠性是结构安全性、适用性和耐久性的统称。 二、机构的功能函数 一般情况下,总可以将影响结构可靠性的因素归纳为两个综合量,即结构或机构构件的载荷效应S和抗力R。 令 Z=g(R,S)=R—S (17-1) 实际工程结构的载荷效应S和抗力R均为随机变量,由此Z也是一个随机变量,总可能出现下列三种情况: Z>0 结构可靠 Z<0 结构失效 Z=0 结构处于极限状态 由于根据Z值的大小,可以判断结构是否满足某一确定功能要求,因此称式(17-1)表达的Z为结构功能函数。而把 Z=R—S=0 (17-2) 成为极限状态方程。 由于影响荷载效应S和结构抗力R都有很多更基本的随机变量(如截面几何特性、结构尺寸、材料性能等),设这些随机变量为X1、X2、…、Xn,则结构功能函数的一般形式为 Z=g(X1,X2,…,Xn) (17-3) 三、结构极限状态 结构的极限状态是结构由可靠转变为失效的临界状态。如果整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,则此特定状态成为该功能的极限状态。 结构的极限状态可分为以下两类: 1、承载能力的极限状态 这种极限状态对应于结构或结构构件达到最大承载能力或不适用继续承载的变形。 当结构或结构构件出现下列状态之一时,即认为超过了承载能力极限状态: (1) 整个结构或结构的一部分作为刚体失去平衡(如倾覆等); (2) 结构构件或连接因材料强度被超过而破坏(包括疲劳破坏),或因过度的塑性变形而不适用于继续承载; (3) 结构转变为机动体系; (4) 结构或结构构件丧失稳定(如压屈等)。 2、正常使用极限状态 这种极限状态对应于结构或结构构件达到正常使用或耐久性能的某项规定限值。 当结构或结构构件出现下列状态之一时,即认为超过了正常使用极限状态: (1) 影响正常使用或外观的变形; (2) 影响正常使用或耐久性能的局部损坏(包括裂缝); (3) 影响正常使用的振动; (4) 影响正常使用的其他特定状态。 四、结构可靠度 结构可靠度是结构可靠性的概率量度。其更明确、更科学的定义是:结构在规定的时间内,在规定的条件下,完成预定功能的概率。 上述“规定的时间”,一般指结构设计基准期,目前世界上大多数国家普通结构的设计基准期均为50年。由于载荷效应一般随设计基准期增大而增大(设计应取设计基准期内的最大值),而影响结构抗力的材料性能指标则随设计基准期的增大而减小,因此结构可靠度与“规定的时间”有关,“规定的时间”越长,结构的可靠度越低。 结构可靠度定义中“规定的条件”,指正常设计、正常施工、正常使用条件,不考虑人为错误或过失因素。人为错误或过失所造成的结构失效为结构事故,应通过质量监督和加强管理予以克服。 若已知结构功能函数Z的概率密度分布函数(Z),则结构的可靠度可按下式计算 (17-4) 若将结构处于失效状态的概率称为失效概率,以表示,则 (17-5) 由于事件{Z<0}与事件{Z≥0}是对立的,因此结构可靠度ps与结构失效概率有下列关系 ps+=1 (17-6) 或 ps=1— (17-7) 即由结构失效概率可确定结构可靠度ps。由于结构失效一般为小概率事件,失效概率对结构可靠度的把握更为直观,因此工程结构可靠度分析一般计算结构失效概率。 若已知结构载荷效应S和抗力R的概率分布密度函数分别为fS(S)及fR(R),且S与R相互独立,则 (17-8) 此时结构失效概率 (17-9) 上式如先对R积分再对S积分,成为 (17-10) 如式(17-9)先对S积分再对R积分,成为 (17-11) 式中 、——分别为随机变量R和S的概率分布函数。 由于结构抗力R和荷载效应S均为随机变量,因此绝对可靠的结构(=1或=0)是不存在的。从概率的观点,结构设计的目标就是保障结构可靠度足够大或失效概率足够小,达到人们可以接受的程度。 五、可靠指标 假设在结构功能函数Z=R—S中,R和S为两个相互独立的正态随机变量。它们的均值和方差分别为。有概率知识,此时Z也为正态随机变量,其均值和方差可按下列公式计算 、 (17-12) (17-13) 则结构失效概率 (17-14) 令 (17-15) (17-16) 则 (17-17) 其中,Y为标准正态随机变量, 为标准正态分布函数。 将式(17-15)代入式(17-14)得 (17-18) 将式(17-18)用图形表达,如图17-1所示,当β变小时,图17-1中阴影部分的面积增大,亦即失效概率增大;而β变大时,阴影部分的面积减小,亦即失效概率减小,这说明β可以作为衡量结构可靠度的一个数量指标,故称β为结构可靠指标。 将式(17-12)、式(17-13)代入式(17-15)可得结构抗力R和载荷效应S均为正态随机变量时,可靠指标的表达式为 (17-19) 当R、S均为对数正态随机变量时,失效概率的计算式为 (17-20) 因lnR、lnS均为正态随机变量,则可靠指标为 (17-21) 式中、分别为lnR、lnS的均值, 分别为lnR,lnS的标准差。可以证明,对于对数正态随机变量X,其对数lnX的统计参数与其本身的统计参数之间的关系为 (17-22) (17-23) 式中 的变异系数。 应用式(17-22)、式(17-23)可得结构抗力R和载荷效应S均为对数正态随机变量时,可靠指标的计算式为 (17-24) 当结构功能函数的基本变量不为正态分布或对数正态分布时,或者结构功能函数为非线性函数时,结构可靠指标可能很难用基本变量的统计参数表达,这时要利用式(17-17),由失效概率计算可靠指标。 (17-25) 式中 ——表示标准正态分布函数的反函数。 表17-1给出了可靠指标β与的对应关系。 β与的数值关系 表17-1 β 1.0 1.5 2.0 2.5 1.59×10-1 6.68×10-2 2.28×10-2 6.21×10-3 β 3.0 3.5 4.0 4.5 1.35×10-3 2.33×10-4 3.17×10-5 3.40×10-6 第二节 结构可靠度分析的实用方法 按式(17-4)、式(17-5)计算结构可靠度或失效概率需已知结构功能函数的结构分布,当影响结构功能函数的基本随机变量较多时,实际上确定其概率分布非常困难。一般确定随机变量的统计参数(如均值、方差等)较为容易,如果仅依据基本随机变量的统计参数,以及它们各自的概率分布函数进行结构可靠度分析,则在工程上较为实用。以下介绍两种可靠度分析的使用方法。 一、中心点法 1、结构功能函数为线性函数情况 设结构功能函数具有如下形式 (17-26) 式中、(i=1,2,…,n)为已知常数1,为功能函数随机自变量。 则功能函数的均值和方差分别为 (17-27) (17-28) 式中 、——的均值和标准差。 根据概率论中心极限定理,Z的分布将随功能函数中自变量数n的增加而渐进于正态分布,因此当n较大时,可采用下式近似计算可靠指标 (17-29) 而结构的失效概率按式(17-17)计算。 2.结构功能函数为非线性函数情况 一般情况下,结构功能函数为非线性函数,设 (17-30) Z在某点上可按泰勒级数展开。中心点法就是在各个变量的均值点(即中心点)处将Z展开成泰勒级数,并进取线性项,即 (17-31) 上式中,下标表示在各变量的均值点处赋值。 这样功能函数Z的均值和方差近似为 (17-32a) (17-33a) 由此可计算可靠指标 (17-33) 3.可靠指标的几何意义 当结构的功能函数为线性函数式(17-26)时,结构的极限状态方程为 (17-34) 引入标准化变量 (17-35) 则 (17-36) 将式(17-36)代入极限状态方程(17-34)得 (17-37) 或 (17-38) 式中,sign(y)为符号函数。若y>0,则sign(y)=1,若y<0, 则sign(y)=-1;若y=0,则sign(y)=0. 将式(17-38)与线性方程标准形式比较得 (17-39) 则 (17-40) d= (17-41) 由标准线性方程(17-39)的几何意义知, (17-42) 为方程所代表线性曲面的单位法线向量,d为坐标原点到该线性曲面的距离。显然,d≥0.将式(17-29)与式(17-41)比较知 (17-43) 由此得出结论Ⅰ:当为独立正态随机变量时,且极限状态曲面为线性曲面,则在标准化空间中,原点到极限状态曲面的距离为可靠指标的绝对值。 图17-2表示了当随机变量X为二维向量时,线性极限状态曲面(此时为一直线)情况下β的几何意义。 当结构的功能函数为非线性函数时,则极限状态方程 (17-44) 为非线性曲面。此时在g(X)=0上取一点 ,作过点g(X)=0的切面R(X)=0,即 (17-45) 同样将式(17-45)得 (17-46) 如将点取为均值点,即 (17-47) 则式(17-46)成为 (17-48) 将上式转化为标准线性方程式(17-39),此时 (17-49) (17-50) 将式(17-50)与式(17-33)比较,同样得出 (17-51) 由此可得出结论Ⅱ:当为独立正态随机变量时,可靠指标β的绝对值近似等于在标准化空间中原点到过极限状态曲面上某点(通常取为均值点)切面的距离。 图17-3表示了当随机向量X为二维向量时,非线性极限状态曲面情况下β的几何意义。 当在标准化空间中极限状态方程为单曲曲面时(曲面不改变弯曲方向,即不改变符号),如果为凹面(如图17-4a所示),则极限状态方程线性化带来的结构失效概率计算的误差为 (17-52) 为了减少,需增大,即减小d,由此 (17-53) 如图17-4a所示,可以证明 (17-54) 其中,为原点到的最短距离。 如果为凸面,如图17-4b所示,则 (17-55) 为了减少,需减少,即增大d,由此 (17-56) 如图17-4b所示,可以证明 (17-57) 从式(17-53)、式(17-54)、式(17-56)、式(17-57)得 (17-58) 或 (17-59) 由此得出结论Ⅲ:当为独立正态随机变量时,且在X的标准化空间中极限状态曲面为单曲曲面,则用原点到极限状态曲面的最短距离代替可靠指标所产生的误差最小。 4、中心点法的优缺点 中心点法最大的优点是计算简便,所得到的用以度量结构可靠程度的可靠指标β具有明确的物理概念与几何意义。 然而中心点法上存在如下问题: (1)该方法没有考虑有关基本变量分布类型的信息,因中心点法建立在正态分布变量基础上,当实际的变量分布不同于正态分布时,其可靠度(或失效概率)的计算结果必将不同,因而可靠指标的计算结果会有误差。 (2)当功能函数为非线性函数时,因该方法在中心点处取线性近似,由此得到的可靠指标β将是近似的,其近似程度取决于在标准化空间线性近似的极限状态曲面到原点的距离与真正的极限状态曲面到原点的见最小距离之间的差异程度,一般来说,中心点离极限状态曲面上到原点最近距离的点越近,则可靠指标的计算差别越小。 二、验算点法 作为中心点法的改进,验算点法主要有两个特点: (1)当极限状态方程g(X)=0为非线性曲面时,不以通过中心点的切平面作为线性近似,而以通过g(X)=0上某一点的切平面作为线性近似,以减小中心点法的误差。 (2)当基本变量具有分布类型的信息时,将的分布在处变换为当量正态分布,以考虑变量分布对可靠度(可靠指标)计算结果的影响。 这个特定的称为验算点或设计点。 设功能函数 ,,…, ) 按 将X空间变换到空间,得 在空间中,容易写出通过验算点在曲面=0上的切平面方程为 (17-60) 由于是=0上的一点,因此 (17-61) 则切平面方程简化为 (17-62) 从原点到式(17-62)所代表切平面的距离为可靠指标β。因此 (17-63) 令 (17-64) 可以证明,实际上就是原点到验算点的方向余弦。从而可得 (17-65) 变回X空间可得 (17-66) 因 (17-67) 将式(17-67)代入式(17-64),得 (17-68) 此外, (17-69) 式(17-66)、式(17-68)、式(17-69)有2n+1个方程,可解得,及β共2n+1个未知数。但由于一般g(x)为非线性函数,则通常采用逐次迭代法解上述方程组。 上述可靠指标β的计算方法适合结构功能函数的基本变量均为正态分布情况.当其中任一变量为非正态分布时,可在验算点处,根据它的概率分布函数和概率密度函数与正态变量等价的条件(图17-5),变换为当量正态变量,并确定其均值。 由在验算点上概率分布函数相等的条件 (17-70) 得出 (17-71) 由在验算点上概率密度相等的条件 (17-72) 可得 (17-73) 式中 、——分别为标准正态分布函数和它的反函数; ——标准正态分布密度函数 综上所述,按验算点法,和β可逐次迭代,按照下面步骤进行计算: (1)列出极限状态方程g(,,…, )=0,并确定所有基本变量的分布类型和统计参数; (2)假定和β的初值,一般取的初值等于的均值; (3)对于非正态变量,在验算点处按式(17-73)和式(17-71)计算当量正态变量的标准差和均值,并分别代替原来变量的标准差和均值; (4)求方向余弦 (17-74) (5)按公式=0,求解β; (6)计算的新值 = 重复步骤(3)~(6),直到前后两次计算所得的β值相对差值不超过容许限值。 第三节 随机变量间的相关性对结构可靠度的影响 本章第二节中讨论的结构可靠度计算方法,是以结构功能函数中各基本变量间相互独立为条件的。但实际上,影响工程结构可靠性的各随机变量间有可能相关,如地震作用效应与重力载荷效应之间、结构构件截面尺寸与结构材料强度之间等,就有一定的相关性。因此有必要考虑随机变量相关性对结构可靠度的影响。 设结构功能函数为 采用式(17-31)对Z进行现行近似,并设随机变量和间的相关系数为(当i≠j时,;当i=j时,),则可按下式近似计算结构可靠指标 (17-75) 可以证明,当g(μ)为线性式,且各随机变量均为正态变量时,式(17-75)表达式的可靠指标为精确式,否则只为近似计算公式。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 钢结构 框架 体系 结构 系统 可靠 计算
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文