压轴题解题策略:平行四边形的存在性问题.doc
《压轴题解题策略:平行四边形的存在性问题.doc》由会员分享,可在线阅读,更多相关《压轴题解题策略:平行四边形的存在性问题.doc(7页珍藏版)》请在咨信网上搜索。
中考数学压轴题解题策略 平行四边形的存在性问题解题策略 2015年9月13日星期日 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快. 如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便. 根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便. 例题解析 例❶ 如图1-1,在平面直角坐标系中,已知抛物线y=-x2-2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为P,如果以点P、A、C、D为顶点的四边形是平行四边形,求点D的坐标. 图1-1 【解析】P、A、C三点是确定的,过△PAC的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D(如图1-2). 由y=-x2-2x+3=-(x+1)2+4,得A(-3,0),C(0, 3),P(-1, 4). 由于A(-3,0)C(0, 3),所以P(-1, 4)D1(2, 7). 由于C(0, 3)A(-3,0),所以P(-1, 4)D2(-4, 1). 由于P(-1, 4)C(0, 3),所以A(-3,0)D3(-2, -1). 我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了. 图1-2 例❷ 如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 图2-1 【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准. 由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0). ①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3). ②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4. 所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21). 我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标. 图2-2 图2-3 图2-4 例❸ 如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形. 图 3-1 【解析】由y=-x+4,得A(4, 0),直线AB与坐标轴的夹角为45°. 在O、A、C、D四个点中,O、A是确定的,以线段OA为分类标准. 如图3-2,如果OA是菱形的对角线,那么点C在OA的垂直平分线上,点C(2,2)关于OA的对称点D的坐标为(2,-2). 如果OA是菱形的边,那么又存在两种情况: 如图3-3,以O为圆心,OA为半径的圆与直线AB的交点恰好为点B(0, 4),那么正方形AOCD的顶点D的坐标为(4, 4). 如图3-4,以A为圆心,AO为半径的圆与直线AB有两个交点C和C′,点C和C′向左平移4个单位得到点D和D′. 图3-2 图3-3 图3-4 例❹ 如图4-1,已知抛物线与x轴的负半轴交于点C,点E的坐标为(0,-3),点N在抛物线的对称轴上,点M在抛物线上,是否存在这样的点M、N,使得以M、N、C、E为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由. 图4-1 【解析】C(-4,0)、E(0,-3)两点是确定的,点N的横坐标-2也是确定的. 以CE为分类标准,分两种情况讨论平行四边形: ①如图4-2,当CE为平行四边形的边时,由于C、E两点间的水平距离为4,所以M、N两点间的水平距离也为4,因此点M的横坐标为-6或2. 将x=-6和x=2分别代入抛物线的解析式,得M(-6,16)或(2, 16). ②如图4-3,当CE为平行四边形的对角线时,M为抛物线的顶点,所以M. 图4-2 图4-3 例❺如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),点D是第四象限内抛物线上的一点,直线AD与y轴负半轴交于点C,且CD=4AC.设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由. 图5-1 【解析】由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0). 由CD=4AC,得xD=4.所以D(4, 5a). 已知A(-1, 0)、D(4, 5a),xP=1,以AD为分类标准,分两种情况讨论: ①如图5-2,如果AD为矩形的边,我们根据AD//QP,AD=QP来两次平移坐标. 由于A、D两点间的水平距离为5,所以点Q的横坐标为-4.所以Q(-4,21a). 由于A、D两点间的竖直距离为-5a,所以点P的纵坐标为26a.所以P(1, 26a). 根据矩形的对角线相等,得AP2=QD2.所以22+(26a)2=82+(16a)2. 整理,得7a2=1.所以.此时P. ②如图5-3,如果AD为矩形的对角线,我们根据AP//QD,AP=QD来两次平移坐标. 由于A、P两点间的水平距离为2,所以点Q的横坐标为2.所以Q(2,-3a). 由于Q、D两点间的竖直距离为-8a,所以点P的纵坐标为8a.所以P(1, 8a). 再根据AD2=PQ2,得52+(5a)2=12+(11a)2. 整理,得4a2=1.所以.此时P. 我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系. 上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程. 如图5-2,如果∠ADP=90°,那么;如图5-3,如果∠QAP=90°,那么. 图5-2 图5-3 例❻ 如图6-1,将抛物线c1:沿x轴翻折,得到抛物线c2. 现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由. 图6-1 【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A、B、D、E、M、N六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB和△NED是边长为2的等边三角形,那么平移就简单了. 如图6-3,在两个等边三角形平移的过程中,AM与EN保持平行且相等,所以四边形ANEM保持平行四边形的形状,点O为对称中心. 【解法一】如果∠ANE=90°,根据30°角所对的直角边等于斜边的一半,可得AE=2EN=4.而AE=AO+OE=2AO,所以AO=2.已知AB=2,此时B、O重合(如图6-4),所以m=BO=1. 【解法二】如果对角线MN=AE,那么OM=OA,此时△MAO是等边三角形.所以等边三角形MAB与△MAO重合.因此B、O重合,m=BO=1. 【解法三】在平移的过程中,、,M,根据OA2=OM 2列方程(1+m)2=m2+3.解得m=1. 图6-2 图6-3 图6-4 例❼ 如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G分别在AD、BC上,且AE=CG. (1)求证四边形EFGH是平行四边形; (2)当四边形EFGH是矩形时,求AE的长; (3)当四边形EFGH是菱形时,求AE的长. 图7-1 【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了. (2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH是矩形. 以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2. 如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形. 如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形. (3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形. 过FH的中点O画FH的垂线,EG就产生了. 在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1. 又一次说明了如果会画图,答案就在图形中. 图7-2 图7-3 图7-4 图7-5 例❽ 如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE、DA为边作平行四边形DEFA. (1)如果平行四边形DEFA为矩形,求m的值; (2)如果平行四边形DEFA为菱形,请直接写出m的值. 图8-1 【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的. 如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEFA. 如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C. 如图8-4,过点C画y轴,产生点O和点B. 图8-2 图8-3 图8-4 您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5. 同样的,我们可以画如图8-6,如图8-7的两个菱形. 图8-5 图8-6 图8-7- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 压轴 题解 策略 平行四边形 存在 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文