平面向量基本定理及坐标表示.ppt
《平面向量基本定理及坐标表示.ppt》由会员分享,可在线阅读,更多相关《平面向量基本定理及坐标表示.ppt(22页珍藏版)》请在咨信网上搜索。
平面向量基本定理 与坐标表示当当 时,时,与与 同向,同向,且且 是是 的的 倍倍;当当 时,时,与与 反向,反向,且且 是是 的的 倍倍;当当 时,时,且,且 .复习复习:向量共线充要条件向量共线充要条件向量的加法:OBCAOAB平行四边形法则平行四边形法则三角形法则三角形法则共起点共起点首尾相接首尾相接OCABMNOCABMN平面向量基本定理:平面向量基本定理:(1)(1)不共线的向量不共线的向量 叫做这一平面内所有向量叫做这一平面内所有向量 的一组基底的一组基底;(4)(4)基底给定时基底给定时,分解形式唯一分解形式唯一.(2)(2)基底不唯一基底不唯一;(3)(3)任一向量任一向量 都可以沿两个不共线的方向(都可以沿两个不共线的方向(的方向)分解成两个向量(的方向)分解成两个向量()和的形式;)和的形式;说明:说明:1.判断下列说法是否正确:判断下列说法是否正确:A、一个平面内只有一对不共线向量可作为表示该平面所有向、一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;量的基底;B、一个平面内有无数多对不共线向量可作为表示该平面所有、一个平面内有无数多对不共线向量可作为表示该平面所有向量的基底;向量的基底;C、零向量不可为基底中的向量。、零向量不可为基底中的向量。2.设设O是平行四边形是平行四边形ABCD的两对角线交点,下列向量组:的两对角线交点,下列向量组:AD与与AB;DA与与BC;CA与与DC;OD与与OB。其中可。其中可作为这个平行四边形所在平面内所有向量的一组基底的是作为这个平行四边形所在平面内所有向量的一组基底的是?,K=1,t=-3K=1,t=-3 概念辨析概念辨析答案答案解析解析4.4.若若e e1 1,e e2 2是是平平面面内内的的一一组组基基底底,则则下下列列四四组组向量能作为平面向量的基底的是(向量能作为平面向量的基底的是()A.A.e e1 1e e2 2,e e2 2e e1 1 B.2B.2e e1 1e e2 2,e e1 1 e e2 2C.2C.2e e2 23 3e e1 1,6 6e e1 14 4e e2 2 D.D.e e1 1e e2 2,e e1 1e e2 2反思与感悟反思与感悟考考查查两两个个向向量量是是否否能能构构成成基基底底,主主要要看看两两向向量量是是否否非非零零且且不不共共线线.此此外外,一一个个平平面面的的基基底底一一旦旦确确定定,那那么么平平面面上上任任意意一一个个向向量量都都可可以以由由这这个个基底唯一线性表示出来基底唯一线性表示出来.例例1.1.已知向量已知向量e e1 1,e e2 2,求作向量,求作向量-2.5-2.5e e1 1+3+3e e2 2作法作法:1:1、任取一点、任取一点O,O,作作 O OA AB BC C2 2、作、作 OACB.OACB.3 3、就是求作的向量就是求作的向量 例题解析例题解析解答解答解答解答两个非零向量两个非零向量 ,向量的夹角向量的夹角 与与 反向反向O OA AB BO OA AB B记作记作与与 垂直,垂直,O OA AB B注意注意:在两向量的夹在两向量的夹角定义中角定义中,两向量必两向量必须是同起点的须是同起点的 与与 同向同向O OA AB B向量的正交分解向量的正交分解在平面上,如果选取互相垂直的向量作在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便为基底时,会为我们研究问题带来方便向量的坐标表示向量向量 P(x,y)一一 一一 对对 应应 在平面直角坐标系内,起点不在坐标在平面直角坐标系内,起点不在坐标原点原点O的向量如何用坐标来表示的向量如何用坐标来表示?Aoxyaa 可通过向量的可通过向量的平移,将向量的起点平移,将向量的起点移到坐标的原点移到坐标的原点O处处.解决方案解决方案:平面向量的坐标表示平面向量的坐标表示如图,如图,是分别与是分别与x轴、轴、y轴方向相同轴方向相同的单位向量,若以的单位向量,若以 为基底,则为基底,则 这里,我们把(这里,我们把(x,y)叫做)叫做向量向量 的(直角)坐标,记作的(直角)坐标,记作其中,其中,x x叫做叫做 在在x x轴上的坐标,轴上的坐标,y y叫做叫做 在在y y轴上的坐标,轴上的坐标,式叫做式叫做向量的坐标表示向量的坐标表示。1、把、把 a=x i+y j 称为称为向量基底形式向量基底形式.2、把、把(x,y)叫做向量叫做向量a的(直角)坐标的(直角)坐标,记为:记为:a=(x,y),称其为称其为向量的坐标形式向量的坐标形式.3、a=x i+y j=(x,y)4、其中、其中 x、y 叫做叫做 a 在在X、Y轴上的坐标轴上的坐标.单位向量单位向量 i=(1,0),),j=(0,1)5在平面内有点在平面内有点A(x1,y1)和点)和点B(x2,y2),向量向量例例2 2如图,用基底如图,用基底 ,分别表示向量,分别表示向量 并求它们的坐标并求它们的坐标解:由图可知解:由图可知同理,同理,平面向量的坐标表示平面向量的坐标表示A1AA2yxO1 1- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 基本 定理 坐标 表示
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文