含参一元一次方程解法.doc
《含参一元一次方程解法.doc》由会员分享,可在线阅读,更多相关《含参一元一次方程解法.doc(4页珍藏版)》请在咨信网上搜索。
含参一元一次方程的解法 知识回顾 1. 一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 2. 解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1. 这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序进行,要根据方程的特点灵活运用. 3. 易错点1:去括号:括号前是负号时,括号里各项均要变号. 易错点2:去分母:漏乘不含分母的项. 易错点3:移项忘记变号. 基础巩固 【巩固1】 若是关于x的一元一次方程,则. 【巩固2】 方程去分母正确的是() A.B. C.D. 【巩固3】 解方程 1.1一元一次方程的巧解 知识导航 求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用. 对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中的应用. 具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程的系数进行裂项;⑶进行拆项和添项,从而化简原方程. 经典例题 【例1】 ⑴⑵ 【例2】 解方程: ⑴ ⑵ 1.2同解方程 知识导航 若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法: ⑴只有一个方程含有参数,另外一个方程可以直接求解.此时,直接求得两个方程的公共解,然后代入需要求参数的方程,能够最快的得到答案. ⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法. 注意:⑴两个解的数量关系有很多种,比如相等、互为相反数、多1、2倍等. (2)一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础. 经典例题 【例3】 ⑴若方程与有相同的解,求a得值.; ⑵若和是关于x的同解方程,求的值. 【例4】 ⑴已知:与都是关于x的一元一次方程,且它们的解互为相反数,求m,n分别是多少?关于x的方程的解是多少? ⑵当时,关于x的方程的解是关于y的方程的解得2倍. 1.3含参方程 知识导航 当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成的形式,方程的解根据的取值范围分类讨论. 1. 当时,方程有唯一解. 2. 当时,方程有无数个解,解是任意数. 3. 当且时,方程无解. 经典例题 【例5】 解关于x的方程 【例6】 ⑴若方程没有解,则a的值为. ⑵若方程有无数解,则的值是. ⑶当时,关于x的方程是一元一次方程.若该方程的唯一解是,求p得值. ⑷已知:关于的方程有无数多组解,试求的值. 1.4绝对值方程 知识导航 解绝对值方程的一般步骤:⑴分类讨论去绝对值;⑵分别求解两个方程;⑶综合两个方程的解;⑷验证. 经典例题 【例7】 解绝对值方程: ⑴⑵ 1.5课后习题 【演练1】 解方程: 【演练2】 解方程: 【演练3】 ⑴方程与方程的解相同,则a的值为. ⑵若关于x的方程与的解互为相反数,则=. ⑶若关于x的方程和,求a得值. 【演练4】 解关于x的方程: 【演练5】 ⑴已知关于x的方程无解,那么, . ⑵若关于x的方程有唯一解,则题中的参数应满足的条件是 . 4 / 4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 一元一次方程 解法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文