高考文科数学第一轮复习测试题30.doc
《高考文科数学第一轮复习测试题30.doc》由会员分享,可在线阅读,更多相关《高考文科数学第一轮复习测试题30.doc(11页珍藏版)》请在咨信网上搜索。
活页限时训练 命题要点:(1)三角函数的图象的变换(′11年2考,′10年2考);(2)已知三角函数图象求解析式(′11年3考,′10年2考);(3)三角函数图象与性质的综合应用(′11年7考,′10年6考). A级 (时间:40分钟 满分:60分) 一、选择题(每小题5分,共25分) 1.若将某正弦函数的图象向右平移以后,所得到的图象的函数式是y=sin,则原来的函数表达式为( ). A.y=sin B.y=sin C.y=sin D.y=sin- 解析 y=sin=sin. 答案 A 2.(2011·新课标全国)设函数f(x)=sin+cos,则( ). A.y=f(x)在单调递增,其图象关于直线x=对称 B.y=f(x)在单调递增,其图象关于直线x=对称 C.y=f(x)在单调递减,其图象关于直线x=对称 D.y=f(x)在单调递减,其图象关于直线x=对称 解析 因为y=sin+cos=sin =cos 2x,所以y=cos 2x在单调递减,对称轴为2x=kπ(k∈Z),即x=(k∈Z),当k=1时,x=. 答案 D 3.若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,则( ). A.ω=,φ= B.ω=,φ= C.ω=2,φ= D.ω=2,φ= 解析 由T==π,∴ω=2.由f(0)=⇒2sin φ=, ∴sin φ=,又|φ|<,∴φ=. 答案 D 4.(2012·龙岩模拟)将函数y=f(x)·sin x的图象向右平移个单位后,再作关于x轴对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是( ). A.sin x B.cos x C.2sin x D.2cos x 解析 运用逆变换方法:作y=1-2sin2x=cos 2x的图象关于x轴的对称图象得y=-cos 2x=-sin 2的图象,再向左平移个单位得y=f(x)·sin x=-sin 2=sin 2x=2sin xcos x的图象.∴f(x)=2cos x. 答案 D 5.(2011·辽宁)已知函数f(x)=Atan(ωx+φ),y=f(x)的部分图象如图,则f=( ). A.2+ B. C. D.2- 解析 由题中的图象可知:T=2=,∴ω=2, ∴2×+φ=kπ+(k∈Z).又|φ|<,∴φ=. 又f(0)=1,∴Atan=1,得A=1, ∴f(x)=tan, ∴f=tan=tan=. 答案 B 二、填空题(每小题4分,共12分) 6.将函数y=sin的图象向右平移个单位,再向上平移2个单位所得图象对应的函数解析式是________. 解析 y=sin向右平移个单位得: y=sin=sin,再向上平移2个单位得y=sin+2. 答案 y=sin+2 7.(2011·江苏)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是________. 解析 由题图可知A=,=-=,∴T=π. 又=T,∴ω==2. 根据函数图象的对应关系得2×+φ=2kπ+π(k∈Z), ∴φ=2kπ+(k∈Z),令k=0得 φ=,则f(x)=sin, ∴f(0)=sin=. 答案 8.已知函数f(x)=3sin(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈,则f(x)的取值范围是________. 解析 ∵f(x)与g(x)的图象的对称轴完全相同,∴f(x)与g(x)的最小正周期相等,∵ω>0,∴ω=2,∴f(x)=3sin,∵0≤x≤,∴-≤2x-≤,∴-≤sin≤1,∴-≤3sin≤3,即f(x)的取值范围为. 答案 三、解答题(共23分) 9.(11分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示. (1)求函数f(x)的解析式; (2)如何由函数y=2sin x的图象通过适当的变换得到函数f(x)的图象,试写出变换过程. 解 (1)由图象知A=2. f(x)的最小正周期T=4×=π,故ω==2. 将点代入f(x)的解析式,得sin=1. 又|φ|<,∴φ=. 故函数f(x)的解析式为f(x)=2sin. 10.(★)(12分)(2011·深圳一调)已知函数f(x)=2·sincos-sin(x+π). (1)求f(x)的最小正周期; (2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值. 解 (1)因为f(x)=sin+sin x=cos x+sin x=2=2sin, 所以f(x)的最小正周期为2π. (2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴g(x)=f=2sin=2sin.∵x∈[0,π],∴x+∈, ∴当x+=,即x=时,sin=1,g(x)取得最大值2. 当x+=,即x=π时,sin=-,g(x)取得最小值-1. B级 (时间:30分钟 满分:40分) 一、选择题(每小题5分,共10分) 1.(2011·天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则( ). A.f(x)在区间[-2π,0]上是增函数 B.f(x)在区间[-3π,-π]上是增函数 C.f(x)在区间[3π,5π]上是减函数 D.f(x)在区间[4π,6π]上是减函数 解析 ∵f(x)的最小正周期为6π,∴ω=,∵当x=时,f(x)有最大值,∴×+φ=+2kπ(k∈Z),φ=+2kπ(k∈Z),∵-π<φ≤π,∴φ=.∴f(x)=2sin,由此函数图象易得,在区间[-2π,0]上是增函数,而在区间[-3π,-π]或[3π,5π]上均不是单调的,在区间[4π,6π]上是单调增函数. 答案 A 2.(2011·全国)设函数f(x)=cos ωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ). A. B.3 C.6 D.9 解析 依题意得,将y=f(x)的图象向右平移个单位长度后得到的是f=cos ω=cos 的图象,故有cos ωx=cos,而cos ωx=cos(k∈Z),故ωx-=2kπ(k∈Z), 即ω=6k(k∈Z),∵ω>0,因此ω的最小值是6. 答案 C 二、填空题(每小题4分,共8分) 3.(2011·福州模拟)在函数f(x)=Asin(ωx+φ)(A>0,ω>0)的一个周期内,当x=时有最大值,当x=时有最小值-,若φ∈,则函数解析式f(x)=________. 解析 首先易知A=,由于x=时f(x)有最大值,当x=时f(x)有最小值-,所以T=×2=,ω=3.又sin=,φ∈,解得φ=,故f(x)=sin. 答案 sin 4.设函数y=sin(ωx+φ)的最小正周期为π,且其图象关于直线x=对称,则在下面四个结论中: ①图象关于点对称;②图象关于点对称;③在上是增函数;④在上是增函数. 以上正确结论的编号为________. 解析 ∵y=sin(ωx+φ)最小正周期为π, ∴ω==2,又其图象关于直线x=对称, ∴2×+φ=kπ+(k∈Z),∴φ=kπ+,k∈Z. 由φ∈,得φ=,∴y=sin. 令2x+=kπ(k∈Z),得x=-(k∈Z). ∴y=sin关于点对称.故②正确. 令2kπ-≤2x+≤2kπ+(k∈Z),得 kπ-≤x≤kπ+(k∈Z). ∴函数y=sin的单调递增区间为 (k∈Z). ∵(k∈Z).∴④正确. 答案 ②④ 三、解答题(共22分) 5.(10分)(2011·潍坊质检)函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示. (1)求f(x)的解析式; (2)设g(x)=2,求函数g(x)在x∈上的最大值,并确定此时x的值. 解 (1)由题图知A=2,=,则=4×,∴ω=. 又f=2sin =2sin=0, ∴sin=0,∵0<φ<,∴-<φ-<, ∴φ-=0,即φ=, ∴f(x)的解析式为f(x)=2sin. (2)由(1)可得f=2sin =2sin, ∴g(x)=2=4× =2-2cos, ∵x∈,∴-≤3x+≤, ∴当3x+=π,即x=时,g(x)max=4. 6.(12分)(2012·华东师大附中模拟)已知函数f(x)=Asin ωx+Bcos ωx(A、B、ω是常数,ω>0)的最小正周期为2,并且当x=时,f(x)max=2. (1)求f(x)的解析式; (2)在闭区间上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由. 解 (1)因为f(x)=sin(ωx+φ),由它的最小正周期为2,知=2,ω=π,又因为当x=时,f(x)max=2,知π+φ=2kπ+(k∈Z),φ=2kπ+(k∈Z),所以f(x)=2sin=2sin(k∈Z). 故f(x)的解析式为f(x)=2sin. (2)当垂直于x轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx+=kπ+(k∈Z),解得x=k+(k∈Z),由≤k+≤,解得≤k≤,又k∈Z,知k=5,由此可知在闭区间上存在f(x)的对称轴,其方程为x=.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 第一轮 复习 测试 30
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文