任意四边形的中点四边形教学设计培训资料.doc
《任意四边形的中点四边形教学设计培训资料.doc》由会员分享,可在线阅读,更多相关《任意四边形的中点四边形教学设计培训资料.doc(7页珍藏版)》请在咨信网上搜索。
学习资料 任意四边形的中点四边形的教学设计 清流县城关中学——魏水林 教学目标: 1.激发学生的学习兴趣,培养学生勇于探索、勇于创新的精神。 2.培养学生独立分析问题、解决问题的能力以及研究能力和创新意识。 3.理解中点四边形的概念,掌握中点四边形判定、证明及应用。 教学重点:中点四边形形状判定和证明 教学难点:对确定中点四边形形状的主要因素的分析和概括 教学方法:自主合作式教学 教学手段:电脑、多媒体课件 教学过程 阶段一:学生活动——引入、基本概念 活动要求:学生以小组形式对问题一一进行探讨,发言 老师指导:教师指导小结 设计意图:因学生对平行四边形一章学得较好,问题1起点较高,重在培养学生的逆向思维,提高学生的学习兴趣。 复习:(四边形的知识) 研究问题1:如图,在四边形ABCD中,E、F分别为AB、BC边上的中点,你能否分别在CD、DA边上找到点G、H,使四边形EFGH为平行四边形?说明理由。 (或如图ABCD为一个四边形纸片,E、F分别为AB、BC的边上的中点,以EF为边能否折叠出一个平行四边形EFGH,使顶点G、H分别在CD、DA边上?若能,说明理由) 阶段二:学生活动——基础问题研究 活动要求:完成对问题一研究[发现、证明]的过程, 老师指导:指导部分学生研究问题 设计意图:通过电脑的动画效果,给学生创造一个发现问题、解决问题的情境。 目的在于激发学生的学习兴趣,培养学生“观察、发现、猜想、证明”问题的数学思想和能力。 活动流程: 观察 发现 猜想 证明 迁移旧知识 掌握知识、提高能力 中点四边形的定义: 如图,四边形ABCD的各边的中点,所构成的四边形EFGH叫做四边形ABCD的中点四边形。 研究:利用课件变换四边形ABCD形状 …… 1、发现:无论四边形ABCD的形状怎么变化,中点四边形EFGH的形状始终为平行四边形。 2、证明: (证法一)连接AC ∵E、F分别为AB、BC的中点 ∴EF∥AC,EF=1/2AC 同理HG∥AC,HG=1/2AC ∴EF∥HG 且EF=HG ∴四边形EFGH为平行四边形 (证法一)连接AC、BD ∵E、F分别为AB、BC的中点 ∴EF∥AC 同理HG∥AC ∴EF∥HG 同理FG∥HE ∴四边形EFGH为平行四边形 归纳:任意一个四边形的中点四边形,都为平行四边形 阶段 三:学生活动——问题的研究和概括 活动要求:用“一般│特殊│一般” 的方法发现和研究问题,概括出确定中点四边形ABCD形状的主要因素。 老师指导:引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。 设计意图:利用电脑的大容量使学生能够在较短的时间内对问题进行多方面地研究。 培养学生“从一般到特殊再到一般”的研究问题的方法和概括能力。 研究问题2:特殊四边形的中点四边形的形状 活动流程: 发现问题 实验、研究问题 结论概括 特 殊 一 般 1、发现问题(特殊四边形):在上一阶段研究的基础上,利用课件变换四边形ABCD形状,使四边形ABCD分别为平行四边形、矩形、菱形、正方形和等腰梯形,研究中点四边形EFGH形状。 发现:中点四边形的形状有矩形、菱形和正方形 问题:决定中点四边形EFGH的形状的主要因素是四边形ABCD的边?角?对角线?…… 2、研究问题(一般四边形): 反之若中点四边形EFGH分别为矩形、菱形和正方形,则四边形ABCD是否一定分别为菱形、矩形(等腰梯形)、正方形? 3、概括规律:决定中点四边形EFGH的形状的主要因素是四边形ABCD的对角线的长度和位置。 (1) 若对角线AC=BD,则四边形EFGH为菱形; (2) 若对角线AC⊥BD,则四边形EFGH为矩形; (3) 若对角线AC=BD,AC⊥BD,则四边形EFGH为正方形。 用“一般│特殊│一般” 的方法发现和研究问题,概括出确定中点四边形ABCD形状的主要因素。 引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。 阶段四:学生活动——发散和创新 活动要求:利用电脑 1、拖动A点使四边形ABCD的图形变化进行研究。 2、变化E、F、G、H点的条件进行研究。 老师指导:老师引导 设计意图:培养学生的发散思维能力,提高学生研究数学的兴趣和创新意识。 1、图形发散“实验”:利用计算机对图形进行变换“实验” 实验一 实验三 实验二 经过以上实验,当ABCD是上面的图形时四边形EFGH仍为平行四边形。特别是“实验三” ,四边形EFGH可以看作四边形ADBC的边AD、BC的中点和对角线AB、CD的中点的四边形,这样就引出了新的问题。 2、条件发散: (1)如图:E、F、G、H分别为各边的四等份点,则四边形EFGH为平行四边形 (2)如图:E、F分别AB、BC边的四等份点,G,H分别为边CD、DA的中点,则四边形EFGH为梯形。…… 阶段五:学生活动——简单应用 活动要求:学生分析 老师指导:老师精点 设计意图:培养学生对新知识灵活的应用的能力。 应用1:如图,梯形ABCD中,AB∥CD,M是AD中点,N是BC中点,E是CD中点,F是AB中点。 (1) 若EF=MN,则BD⊥ME; (2) 若AC=BD,则EF=MN; (3) 若AC⊥BD,则EF=MN。 (只分析方法,应用电脑变换图形,使一题多变,进行变式应用) 应用2:如图(1)(2)(3),最外面的矩形、菱形、正方形的面积为1,则最里面的中点四边形的面积。 (探索解题法,展示数学的图形美) 图(3) 图(2) 图(1) 阶段六:小结 活动要求:思考、归纳 老师指导:教师引导 设计意图:培养学生的归纳能力,使学生形成完整的知识结构和研究数学问题的一般方法。 1、本节课应用了哪些数学方法? 2、决定中点四边形EFGH的形状的主要因素是四边形ABCD的对角线的长度和位置 3、学习中应具备积极探索、勇于创新的品质。 阶段七:教师活动——作业 设计意图:促使培养研究学习型的学生 对所研究的问题进行进一步研究和归纳 教学反思: 1、本节课的指导思想是充分发挥学生在学习中的主体作用。从“问题提出à探讨à归纳à应用à发散和进一步研究”的过程中,同学们主动参与、积极探索,并对难的问题同学们合作研究,整个课堂学习积极性高,研究风气浓。 2、老师充分发挥在学习中的主导作用。对学习能力弱的学生积极地加以指导,并帮助学生分析问题,概括归纳新知识。 3、本节课的突出特点是利用现代技术,为学生创建一个学习、研究的学习情境。通过图形的变换,使学生很容易发现问题的规律、找出解决方法,使学生学得轻松,兴趣浓厚,精神状态极佳。 4、本节课容量较大,但由于采用了电脑辅助教学手段,使学生在老师的启发下,一步一步地探索、归纳、学习,使学生是很容易地掌握了知识,并在探索的过程中培养了学生的创新精神和创新意识。 各种学习资料,仅供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 任意 四边形 中点 教学 设计 培训资料
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文